[1] 周涛, 刘权辉, 杨紫陌, 等.新型冠状病毒肺炎基本再生数的初步预测[J].中国循证医学杂志, 2020, 20(3):359-364. ZHOU T, LIU Q H, YANG Z M, et al.Preliminary prediction of the basic reproduction number of the novel coronavirus 2019-nCoV[J].Chinese Journal of Evidence-Based Medicine, 2020, 20(3):359-364.(in Chinese) [2] MURRAY C J L.Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months[EB/OL].(2020-03-21)[2021-02-10].https://www.researchgate.net/publication/340307671_Forecasting_COVID-19_impact_on_hospital_bed-days_ICU-days_ventilator-days_and_deaths_by_US_state_in_the_next_4_months/fulltext/5e83399d92851c2f526dea7d/Forecasting-COVID-19-impact-on-hospital-bed-days-ICU-days-ventilator-days-and-deaths-by-US-state-in-the-next-4-months.pdf?origin=publication_detail. [3] COOPER I, MONDAL A, ANTONOPOULOS C G.A SIR model assumption for the spread of COVID-19 in different communities[J].Chaos, Solitons & Fractals, 2020, 139:1-10. [4] 张应.基于SIR模型对COVID-19的研究[D].济南:山东大学, 2020. ZHANG Y.Study on COVID-19 based on SIR model[D].Jinan:Shandong University, 2020.(in Chinese) [5] YANG Z F, ZENG Z Q, WANG K, et al.Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions[J].Journal of Thoracic Disease, 2020, 12(3):165-174. [6] 邵俊杰, 禹世雄, 高婧婧, 等.基于SEIR模型的中国山东省与韩国COVID-19疫情早期传播特征比较分析[J].华中师范大学学报(自然科学版), 2020, 54(6):1072-1077. SHAO J J, YU S X, GAO J J, et al.Comparative analysis of the early transmission characteristics of COVID-19 epidemic between Shandong Province in China and South Korea based on the SEIR model[J].Journal of Central China Normal University(Natural Sciences), 2020, 54(6):1072-1077.(in Chinese) [7] 傅家旗, 刘敏, 邓春燕, 等.复杂人流网络下的COVID-19传播模型[J].电子科技大学学报, 2020, 49(3):383-391. FU J Q, LIU M, DENG C Y, et al.Spreading model of the COVID-19 based on the complex human mobility[J].Journal of University of Electronic Science and Technology of China, 2020, 49(3):383-391.(in Chinese) [8] 雷斌, 刘星良, 曹振, 等.COVID-19在城市轨道交通系统内的传播建模与预测[J].交通运输工程学报, 2020, 20(3):139-149. LEI B, LIU X L, CAO Z, et al.Modeling and forecasting of COVID-19 spread in urban rail transit system[J].Journal of Traffic and Transportation Engineering, 2020, 20(3):139-149.(in Chinese) [9] 张原, 尤翀, 蔡振豪, 等.新冠肺炎(COVID-19)新型随机传播动力学模型及应用[J].应用数学学报, 2020, 43(2):440-451. ZHANG Y, YOU C, CAI Z H, et al.A new stochastic dynamics model for COVID-19 and its application[J].Acta Mathematicae Applicatae Sinica, 2020, 43(2):440-451.(in Chinese) [10] 张李盈, 李东宸, 任景莉.多阶段动态时滞动力学模型的COVID-19传播分析[J].武汉大学学报(信息科学版), 2020, 45(5):658-666. ZHANG L Y, LI D C, REN J L.Analysis of COVID-19 by discrete multi-stage dynamics system with time delay[J].Geomatics and Information Science of Wuhan University, 2020, 45(5):658-666.(in Chinese) [11] CHIMMULA V K R, ZHANG L.Time series forecasting of COVID-19 transmission in Canada using LSTM networks[J].Chaos, Solitons & Fractals, 2020, 135:1-10. [12] ARORA P, KUMAR H, PANIGRAHI B K.Prediction and analysis of COVID-19 positive cases using deep learning models:a descriptive case study of India[J].Chaos, Solitons & Fractals, 2020, 139:1-10. [13] HUANG C J, CHEN Y H, MA Y X, et al.Multiple-input deep convolutional neural network model for COVID-19 forecasting in China[EB/OL].(2020-03-23)[2021-02-10].https://www.researchgate.net/publication/340240123_Multiple-Input_Deep_Convolutional_Neural_Network_Model_for_COVID-19_Forecasting_in_China/fulltext/5e81fa1f458515efa0ba3053/Multiple-Input-Deep-Convolutional-Neural-Network-Model-for-COVID-19-Forecasting-in-China.pdf?origin=publication_detail. [14] YANG T, SHA L, LI J, et al.A deep learning approach for COVID-19 trend prediction[EB/OL].(2020-08-09)[2021-02-10].https://arxiv.org/pdf/2008.05644.pdf. [15] CHEN H T, WANG Y H, GUO T Y, et al.Pre-trained image processing transformer[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12294-12305. [16] 李舟军, 范宇, 吴贤杰.面向自然语言处理的预训练技术研究综述[J].计算机科学, 2020, 47(3):162-173. LI Z J, FAN Y, WU X J.Survey of natural language processing pre-training technology[J].Computer Science, 2020, 47(3):162-173.(in Chinese) [17] DANDEKAR R, BARBASTATHIS G.Quantifying the effect of quarantine control in COVID-19 infectious spread using machine learning[EB/OL].(2020-04-12)[2021-02-10].https://www.researchgate.net/profile/Raj-Dandekar/publication/340473490_Quantifying_the_effect_of_quarantine_control_in_Covid-19_infectious_spread_using_machine_learning/links/5fe4290a92851c13feb498b5/Quantifying-the-effect-of-quarantine-control-in-Covid-19-infectious-spread-using-machine-learning.pdf?origin=publication_detail. [18] ADIGA A, VENKATRAMANAN S, SCHLITT J, et al.Evaluating the impact of international airline suspensions on the early global spread of COVID-19[EB/OL].(2020-02-20)[2021-02-10].https://www.researchgate.net/profile/Stefan-Hoops/publication/339452693_Evaluating_the_impact_of_international_airline_suspensions_on_COVID-19_direct_importation_risk/links/5e6687aaa6fdcc37dd139610/Evaluating-the-impact-of-international-airline-suspensions-on-COVID-19-direct-importation-risk.pdf?origin=publication_detail. [19] GUAN W J, NI Z Y, HU Y, et al.Clinical characteristics of coronavirus disease 2019 in China[J].New England Journal of Medicine, 2020, 382(18):1708-1720. [20] GUPTA S, RAGHUWANSHI G S, CHANDA A.Effect of weather on COVID-19 spread in the US:a prediction model for India in 2020[J].Science of the Total Environment, 2020, 728:1-10. [21] ONDER G, REZZA G, BRUSAFERRO S.Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy[J].JAMA, 2020, 323(18):1775-1776. [22] ALBAWI S, MOHAMMED T A, AL-ZAWI S.Understanding of a convolutional neural network[C]//Proceedings of 2017 International Conference on Engineering and Technology.Washington D.C., USA:IEEE Press, 2017:1-6. [23] GRAVES A.Generating sequences with recurrent neural networks[EB/OL].(2013-08-04)[2021-02-10].https://arxiv.org/pdf/1308.0850.pdf. [24] FISCHER T, KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J].European Journal of Operational Research, 2018, 270(2):654-669. [25] 田武.基于GRU神经网络的广告精准投放预测模型研究[D].北京:北京工业大学, 2019. TIAN W.Research on precision prediction model of advertising placement based on GRU neural network[D].Beijing:Beijing University of Technology, 2019.(in Chinese) [26] CHUNG J, GULCEHRE C, CHO K, et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL].(2014-12-11)[2021-02-10].https://arxiv.org/pdf/1412.3555.pdf. [27] CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/OL].(2014-06-03)[2021-02-10].https://arxiv.org/pdf/1406.1078.pdf. [28] PEI S, SHAMAN J.Initial simulation of SARS-CoV2 spread and intervention effects in the continental US[EB/OL].(2020-03-21)[2021-02-10].https://www.researchgate.net/publication/340108285_Initial_Simulation_of_SARS-CoV2_Spread_and_Intervention_Effects_in_the_Continental_US/fulltext/5e795fc4299bf1b2b9ac05bc/Initial-Simulation-of-SARS-CoV2-Spread-and-Intervention-Effects-in-the-Continental-US.pdf?origin=publication_detail. |