[1] MIN C, MAO S, LIU Y.Big data:a survey[J].Mobile Networks & Applications, 2014, 19(2):171-209. [2] 付小红.论知识组织的原则[J].情报资料工作, 2001(5):11-15. FU X H.Principles on knowledge organization[J].Information and Documentation Services, 2001(5):11-15.(in Chinese) [3] 徐增林, 盛泳潘, 贺丽荣, 等.知识图谱技术综述[J].电子科技大学学报, 2016, 45(4):589-606. XU Z L, SHENG Y P, HE L R, et al.Review on knowledge graph techniques[J].Journal of University of Electronic Science and Technology of China, 2016, 45(4):589-606.(in Chinese) [4] 李涓子, 侯磊.知识图谱研究综述[J].山西大学学报(自然科学版), 2017, 40(3):454-459. LI J Z, HOU L.Reviews on knowledge graph research[J].Journal of Shanxi University(Natural Science Edition), 2017, 40(3):454-459.(in Chinese) [5] Al-MOSLMI T, OCAA M G, OPDAHL A L, et al.Named entity extraction for knowledge graphs:a literature overview[J].IEEE Access, 2020, 8:32862-32881. [6] SMIRNOVA A, CUDRE-MAUROUX P.Relation extraction using distant supervision:a survey[J].ACM Computing Surveys, 2019, 51(5):1-35. [7] KUMAR S.A survey of deep learning methods for relation extraction[EB/OL].[2021-04-05].https://arxiv.org/pdf/1705.03645.pdf. [8] 庄传志, 靳小龙, 朱伟建, 等.基于深度学习的关系抽取研究综述[J].中文信息学报, 2019, 33(12):1-18. ZHUANG C Z, JIN X L, ZHU W J, et al.Deep learning based relation extraction:a survey[J].Journal of Chinese Information Processing, 2019, 33(12):1-18.(in Chinese) [9] DONG X, GABRILOVICH E, HEITZ G, et al.Knowledge vault:a Web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:601-610. [10] HAO Y, ZHANG Y, LIU K, et al.An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2017:221-231. [11] GONG F, WANG M, WANG H, et al.SMR:medical knowledge graph embedding for safe medicine recommendation[J].Big Data Research, 2021, 23:100174. [12] 王昊奋, 漆桂林, 陈华钧.知识图谱:方法, 实践与应用[M].北京:电子工业出版社, 2019. WANG H F, QI G L, CHEN H J.Knowledge graph:method, practice and application[M].Beijing:Publishing House of Electronics Industry, 2019.(in Chinese) [13] RAU L F.Extracting company names from text[C]//Proceedings of the 7th IEEE Conference on Artificial Intelligence Applications.Washington D.C., USA:IEEE Press, 1991:12-23. [14] HUMPHREYS K, GAIZAUSKAS R, AZZAM S, et al.University of sheffield:description of the LaSIE-II system as used for MUC-7[M].[S.l.]:Association for Computational Linguistics, 1998. [15] AITKEN J S.Learning information extraction rules:an inductive logic programming approach[C]//Proceedings of the 15th European Conference on Artificial Intelligence.Berlin, Germany:Springer, 2002:102-112. [16] SCHUTZ A, BUITELAAR P.RelExt:a tool for relation extraction from text in ontology extension[C]//Proceedings of the 4th International Semantic Web Conference.Berlin, Germany:Springer, 2005:593-606. [17] ZHOU G D, ZHANG J, SU J, et al.Recognizing names in biomedical texts:a machine learning approach[EB/OL].[2021-04-05].https://academic.oup.com/bioinformatics/article/20/7/1178/245780. [18] LIU X, ZHANG S, WEI F, et al.Recognizing named entities in tweets[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2011:14-18. [19] SHINYAMA Y, SEKINE S.Preemptive information extraction using unrestricted relation discovery[C]//Proceedings of Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics.[S.l.]:ACL, 2006:304-311. [20] MA X, HOVY E.End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF[EB/OL].[2021-04-05].https://www.aclweb.org/old_anthology/P/P16/P16-1101.pdf. [21] 杨飘, 董文永.基于BERT嵌入的中文命名实体识别方法[J].计算机工程, 2020, 46(4):40-45, 52. YANG P, DONG W Y.Chinese named entity recognition method based on BERT embedding[J].Computer Engineering, 2020, 46(4):40-45, 52.(in Chinese) [22] GAN T, GAN Y, YANMIN H E.Subsequence-level entity attention LSTM for relation extraction[C]//Proceedings of 2019 International Computer Conference on Wavelet Active Media Technology and Information Processing.Washington D.C., USA:IEEE Press, 2019:102-113. [23] XIAO J, ZHOU Z.Chapter-level entity relationship extraction method based on joint learning[C]//Proceedings of 2020 International Conference on Intelligent Human-Machine Systems and Cybernetics.Washington D.C., USA:IEEE Press, 2020:145-156. [24] RONAN C, JASON W, LÉON B, et al.Natural language processing(almost) from scratch[J].Journal of Machine Learning Research, 2011, 12:2493-2537. [25] QIU J, ZHOU Y, WANG Q, et al.Chinese clinical named entity recognition using residual dilated convolutional neural network with conditional random field[J].IEEE Transactions on NanoBioscience, 2019, 12:306-315. [26] KONG J, ZHANG L, JIANG M, et al.Incorporating multi-level CNN and attention mechanism for Chinese clinical named entity recognition[J].Journal of Biomedical Informatics, 2021, 116:103737. [27] HUANG Z, WEI X, KAI Y.Bidirectional LSTM-CRF models for sequence tagging[EB/OL].[2021-04-05].https://arxiv.org/pdf/1508.01991.pdf. [28] UKOV-GREGORI A, BACHRACH Y, COOPE S.Named entity recognition with parallel recurrent neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2018:69-74. [29] RONRAN C, LEE S.Effect of character and word features in bidirectional LSTM-CRF for NER[C]//Proceedings of 2020 IEEE International Conference on Big Data and Smart Computing.Washington D.C., USA:IEEE Press, 2020:14-25. [30] YAN H, DENG B, LI X, et al.TENER:adapting transformer encoder for name entity recognition[EB/OL].[2021-04-05].https://arxiv.org/pdf/1911.04474.pdf. [31] DEVLIN J, CHANG M W, LEE K, et al.BERT:pre-training of deep bidirectional transformers for language understanding[EB/OL].[2021-04-05].https://aclanthology.org/N19-1423.pdf. [32] 曾青霞, 熊旺平, 杜建强, 等.结合自注意力的BiLSTM-CRF的电子病历命名实体识别[J].计算机应用与软件, 2021, 38(3):159-162, 242. ZENG Q X, XIONG W P, DU J Q, et al.Electronic medical record named entity recognition combined with self-attention BiLSTM-CRF[J].Computer Applications and Software, 2021, 38(3):159-162, 242.(in Chinese) [33] 罗熹, 夏先运, 安莹, 等.结合多头自注意力机制与BiLSTM-CRF的中文临床实体识别[J].湖南大学学报(自然科学版), 2021, 48(4):45-55. LUO X, XIA X Y, AN Y, et al.Chinese CNER combined with multi-head self-attention and BiLSTM-CRF[J].Journal of Human University(Natural Sciences), 2021, 48(4):45-55.(in Chinese) [34] 于浏洋, 郭志刚, 陈刚, 等.面向知识图谱构建的知识抽取技术综述[J].信息工程大学学报, 2020, 21(2):227-235. YU L Y, GUO Z G, CHEN G, et al.Summary of knowledge graph construction oriented knowledge extraction technology[J].Journal of Information Engineering University, 2020, 21(2):227-235.(in Chinese) [35] ZENG D, LIU K, LAI S, et al.Relation classification via convolutional deep neural network[EB/OL].[2021-04-05].http://www.nlpr.labs.gov.cn/cip/liukang.files/camera_coling2014_final.pdf. [36] XU K, FENG Y, HUANG S, et al.Semantic relation classification via convolutional neural networks with simple negative sampling[J].Computer Science, 2015, 71:941-949. [37] GUO X Y, ZHANG H Y, XU H J, et al.A single attention-based combination of CNN and RNN for relation classification[J].IEEE Access, 2019, 7:12467-12475. [38] 闫雄, 段跃兴, 张泽华.采用自注意力机制和CNN融合的实体关系抽取[J].计算机工程与科学, 2020, 42(11):2059-2066. YAN X, DUAN Y X, ZHANG Z H.Entity relationship extraction fusing self-attention mechanism and CNN[J].Computer Engineering & Science, 2020, 42(11):2059-2066.(in Chinese) [39] 龚乐君, 刘晓林, 高志宏, 等.基于双向GRU和CNN的药物相互作用关系抽取[J].陕西师范大学学报(自然科学版), 2020, 48(6):108-113. GONG L J, LIU X L, GAO Z H, et al.Extraction of drug-drug interaction based on bidirectional GRU and CNN[J].Journal of Shaanxi Normal University(Natural Science Edition), 2020, 48(6):108-113.(in Chinese) [40] YIN B, SUN Y, WANG Y.Entity relation extraction method based on fusion of multiple information and attention mechanism[C]//Proceedings of 2020 IEEE International Conference on Computer and Communications.Washington D.C., USA:IEEE Press, 2020:145-160. [41] SOCHER R, HUVAL B, MANNING C D, et al.Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of Joint Conference on Empirical Methods in Natural Language Processing(EMNLP) & Computational Natural Language Learning(CoNLL).Washington D.C., USA:IEEE Press, 2012:1201-1211. [42] SHU Z, ZHENG D, HU X, et al.Bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation.Washington D.C., USA:IEEE Press, 2015:73-78. [43] GENG Z, CHEN G, HAN Y, et al.Semantic relation extraction using sequential and tree-structured LSTM with attention[J].Information Sciences, 2020, 509:183-192. [44] 张勇, 高大林, 巩敦卫, 等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报, 2021, 16(3):518-527. ZHANG Y, GAO D L, GONG D W, et al.Attention graph long short term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems, 2021, 16(3):518-527.(in Chinese) [45] MIWA M, BANSAL M.End-to-end relation extraction using LSTMs on sequences and tree structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2016:1105-1116. [46] KATIYAR A, CARDIE C.Going out on a limb:joint extraction of entity mentions and relations without dependency trees[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2017:917-928. [47] ZHENG S, WANG F, BAO H, et al.Joint extraction of entities and relations based on a novel tagging scheme[EB/OL].[2021-04-05].https://arxiv.org/pdf/1706.05075.pdf. [48] LIU Y, LI A, HUANG J, et al.Joint extraction of entities and relations based on multi-label classification[C]//Proceedings of 2019 IEEE International Conference on Data Science in Cyberspace.Washington D.C., USA:IEEE Press, 2019:102-113. [49] WEI Z, SU J, WANG Y, et al.A novel hierarchical binary tagging framework for relational triple extraction[EB/OL].[2021-04-05].https://arxiv.org/pdf/1909.03227v2.pdf. [50] WANG C, LI A, TU H, et al.An advanced BERT-based decomposition method for joint extraction of entities and relations[C]//Proceedings of 2020 IEEE International Conference on Data Science in Cyberspace.Washington D.C., USA:IEEE Press, 2020:145-163. [51] 林海伦, 王元卓, 贾岩涛, 等.面向网络大数据的知识融合方法综述[J].计算机学报, 2017, 40(1):1-27. LIN H L, WANG Y Z, JIA Y T, et al.Network big data oriented knowledge fusion methods:a survey[J].Chinese Journal of Computers, 2017, 40(1):1-27.(in Chinese) [52] KALFOGLOU Y, SCHORLEMMER M.Ontology mapping:the state of the art[J].The Knowledge Engineering Review, 2003, 18(1):1-31. [53] PINTO H S, MARTINS J P.A methodology for ontology integration[C]//Proceedings of the 1st International Conference on Knowledge Capture.Washington D.C., USA:IEEE Press, 2001:123-146. [54] PORTER M F.An algorithm for suffix stripping[J].Program Electronic Library and Information Systems, 1980, 14(3):130-137. [55] NOY N F, MUSEN M A.The PROMPT suite:interactive tools for ontology merging and mapping[J].International Journal of Human-Computer Studies, 2003, 59(6):983-1024. [56] NEWCOMBE H B, KENNEDY J M, AXFORD S J, et al.Automatic linkage of vital records[J].Science, 1959, 130(3381):954-959. [57] 张伟莉, 黄廷磊, 梁霄.基于半监督协同训练的百科知识库实体对齐[J].计算机与现代化, 2017(12):88-93. ZHANG W L, HUANG T L, LIANG X.Instance alignment algorithm between encyclopedia based on semi-supervised co-training[J].Computer and Modernization, 2017(12):88-93.(in Chinese) [58] LI J, WANG Z, XIAO Z, et al.Large scale instance matching via multiple indexes and candidate selection[J].Knowledge-Based Systems, 2013, 50:112-120. [59] BHATTACHARYA I, GETOOR L.Collective entity resolution in relational data[J].ACM Transactions on Knowledge Discovery from Data, 2007, 1(1):5-10. [60] LACOSTE-JULIEN S, PALLA K, DAVIES A, et al.SiGMa:simple greedy matching for aligning large knowledge bases[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2013:10-13. [61] WICK M, SINGH S, MCCALLUM A.A discriminative hierarchical model for fast coreference at large scale[C]//Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2012:379-388. [62] RASTOGI V, DALVI N, GAROFALAKIS M.Large-scale collective entity matching[J].Proceedings of the VLDB Endowment, 2011, 4(4):208-218. [63] SCHOENMACKERS S, DAVIS J, ETZIONI O, et al.Learning first-order horn clauses from Web text[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing.New York, USA:ACM Press, 2010:1088-1098. [64] CHEN Y, GOLDBERG S, WANG D Z, et al.Ontological pathfinding:mining first-order knowledge from large knowledge bases[C]//Proceedings of 2016 ACM SIGMOD Conference on Management of Data.New York, USA:ACM Press, 2016:835-846. [65] 刘峤, 韩明皓, 江浏祎, 等.基于双层随机游走的关系推理算法[J].计算机学报, 2017, 40(6):1275-1290. LIU Q, HAN M H, JIANG L Y, et al.Two-tier random walk based relational inference algorithm[J].Chinese Journal of Computers, 2017, 40(6):1275-1290.(in Chinese) [66] WANG C, CHENG P.Translating representations of knowledge graphs with neighbors[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.New York, USA:ACM Press, 2018:917-920. [67] SUN Z Q, DENG Z H, NIE J Y, et al.Rotate:knowledge graph embedding by relational rotation in complex space[EB/OL].[2021-04-05].http://arxiv.org/pdf/1902.10197.pdf. [68] 彭敏, 黄婷, 田纲, 等.聚合邻域信息的联合知识表示模型[J].中文信息学报, 2021, 35(5):46-54. PENG M, HUANG T, TIAN G, et al.Neighborhood aggregation for knowledge graph representation[J].Journal of Chinese Information Processing, 2021, 35(5):46-54.(in Chinese) [69] 宋浩楠, 赵刚, 王兴芬.融合知识表示和深度强化学习的知识推理方法[J].计算机工程与应用, 2021, 57(19):189-197. SONG H N, ZHAO G, WANG X F, et al.Knowledge reasoning method combining knowledge representation with deep reinforcement learning[J].Computer Engineering and Applications, 2021, 57(19):189-197.(in Chinese) [70] NICKEL M, TRESP V, KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//Proceedings of International Conference on Machine Learning.Washington D.C., USA:IEEE Press, 2011:809-816. [71] CHANG K W, YIH W T, YANG B, et al.Typed tensor decomposition of knowledge bases for relation extraction[EB/OL].[2021-04-05].https://mirror.aclweb.org/emnlp2014/papers/pdf/EMNLP2014165.pdf. [72] 吴运兵, 朱丹红, 廖祥文, 等.路径张量分解的知识图谱推理算法[J].模式识别与人工智能, 2017, 30(5):473-480. WU Y B, ZHU D H, LIAO X W, et al.Knowledge graph reasoning based on paths of tensor factorization[J].Pattern Recognition and Artificial Intelligence, 2017, 30(5):473-480.(in Chinese) [73] YANG B, YIH W T, HE X, et al.Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2021-04-05].http://scottyih.org/files/ICLR2015_updated.pdf. [74] 刘峤, 韩明皓, 杨晓慧, 等.基于表示学习和语义要素感知的关系推理算法[J].计算机研究与发展, 2017, 54(8):1682-1692. LIU Q, HAN M H, YANG X H, et al.Representation learning based relational inference algorithm with semantical aspect awareness[J].Journal of Computer Research and Development, 2017, 54(8):1682-1692.(in Chinese) [75] ZHANG S, TAY Y, YAO L N, et al.Quaternion knowledge graph embeddings[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2019:2731-2741. [76] SOCHER R, CHEN D, MANNING C D, et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing.New York, USA:ACM Press, 2013:926-930. [77] DAS R, NEELAKANTAN A, BELANGER D, et al.Chains of reasoning over entities, relations, and text using recurrent neural networks[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics.[S.l.]:ACL, 2017:105-110. [78] GUO L B, ZHANG Q H, GE W Y, et al.DSKG:a deep sequential model for knowledge graph completion[C]//Proceedings of 2018 China Conference on Knowledge Graph and Semantic Computing.Berlin, Germany:Springer, 2018:65-77. [79] CHEN W R, HONG D P, ZHENG C.Learning knowledge graph embedding with entity descriptions based on LSTM networks[C]//Proceedings of 2020 IEEE International Symposium on Product Compliance Engineering-Asia.Washington D.C., USA:IEEE Press, 2020:1-7. [80] DETTMERS T, MINERVINI P, STENETORP P, et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2017:1811-1818. [81] VASHISHTH S, SANYAL S, NITIN V, et al.InteractE:improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of AAAI Conference on Artificial Intelligence.[S.l.]:AAAI Press, 2020:3009-3016. [82] 李少杰, 陈曙东, 郝悦星, 等.基于卷积神经网络的高效知识表示模型[J].高技术通讯, 2020, 30(9):901-907. LI S J, CHEN S D, HAO Y X, et al.A novel knowledge representation model based on convolutional neural network[J].Chinese High Technology Letters, 2020, 30(9):901-907.(in Chinese) [83] CATHERINE R, COHEN W.Personalized recommendations using knowledge graphs:a probabilistic logic programming approach[C]//Proceedings of ACM Conference on Recommender Systems.New York, USA:ACM Press, 2016:11-22. [84] CAO Y, XIANG W, HE X, et al.Unifying knowledge graph learning and recommendation:towards a better understanding of user preferences[EB/OL].[2021-04-05].https://arxiv.org/pdf/1902.06236.pdf. [85] ZHANG Q, CAO R, SHI F, et al.Interpreting CNN knowledge via an explanatory graph[EB/OL].[2021-04-05].https://arxiv.org/pdf/1708.01785.pdf. [86] HU Z, MA X, LIU Z, et al.Harnessing deep neural networks with logic rules[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2016:2410-2420. [87] WANG H, POON H.Deep probabilistic logic:a unifying framework for indirect supervision[EB/OL].[2021-04-05].https://arxiv.org/pdf/1808.08485.pdf. [88] LI T, SRIKUMAR V.Augmenting neural networks with first-order logic[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.[S.l.]:ACL, 2019:102-113. [89] WANG W, PAN S J.Integrating deep learning with logic fusion for information extraction[EB/OL].[2021-04-05].https://arxiv.org/pdf/1912.03041v1.pdf. [90] PEARL J.Theoretical impediments to machine learning with seven sparks from the causal revolution[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.New York, USA:ACM Press, 2018:3-9. [91] BATTAGLIA P W, HAMRICK J B, BAPST V, et al.Relational inductive biases, deep learning, and graph networks[EB/OL].[2021-04-05].https://arxiv.org/pdf/1806.01261.pdf. [92] 康雁, 李涛, 李浩, 等.融合知识图谱与协同过滤的推荐模型[J].计算机工程, 2020, 46(12):73-79, 87. KANG Y, LI T, LI H, et al.Recommendation model fusing with knowledge graph and collaborative filtering[J].Computer Engineering, 2020, 46(12):73-79, 87.(in Chinese) [93] PAREJA A, DOMENICONI G, CHEN J, et al.EvolveGCN:evolving graph convolutional networks for dynamic graphs[EB/OL].[2021-04-05].https://arxiv.org/pdf/1902.10191.pdf. |