1 |
HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs. ACM Computing Surveys, 54(4): 71.
|
2 |
王昊奋, 丁军, 胡芳槐, 等. 大规模企业级知识图谱实践综述. 计算机工程, 2020, 46(7): 1- 13.
URL
|
|
WANG H F, DING J, HU F H, et al. Survey on large scale enterprise-level knowledge graph practices. Computer Engineering, 2020, 46(7): 1- 13.
URL
|
3 |
王萌, 王昊奋, 李博涵, 等. 新一代知识图谱关键技术综述. 计算机研究与发展, 2022, 59(9): 1947- 1965.
URL
|
|
WANG M, WANG H F, LI B H, et al. Survey on key technologies of new generation knowledge graph. Journal of Computer Research and Development, 2022, 59(9): 1947- 1965.
URL
|
4 |
张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述. 计算机工程, 2022, 48(3): 23- 37.
URL
|
|
ZHANG J X, ZHANG X S, WU C X, et al. Survey of knowledge graph construction techniques. Computer Engineering, 2022, 48(3): 23- 37.
URL
|
5 |
BOLLACKER K D, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 22nd AAAI Conference on Management of Data. New York, USA: AAAI Press, 2007: 1962-1963.
|
6 |
VRANDEČIĆ D, KRÖTZSCH M. Wikidata: a free collaborative knowledgebase. Communications of the ACM, 2014, 57(10): 78- 85.
doi: 10.1145/2629489
|
7 |
SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM Press, 2007: 697-706.
|
8 |
JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494- 514.
doi: 10.1109/TNNLS.2021.3070843
|
9 |
张金斗, 李京. 一种结合层次化类别信息的知识图谱表示学习方法. 软件学报, 2022, 33(9): 3331- 3346.
URL
|
|
ZHANG J D, LI J. Knowledge graph embedding combining with hierarchical type information. Journal of Software, 2022, 33(9): 3331- 3346.
URL
|
10 |
BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
11 |
WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. New York, USA: ACM Press, 2014: 1112-1119.
|
12 |
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2015: 1-7.
|
13 |
SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: [s. n. ], 2019: 1-18.
|
14 |
CHAO L L, HE J S, WANG T F, et al. PairRE: knowledge graph embeddings via paired relation vectors[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2021: 4360-4369.
|
15 |
|
16 |
NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning. Madison, USA: Omni Press, 2011: 809-816.
|
17 |
YANG B S, YIH W, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL]. [2023-04-26]. https://arxiv.org/abs/1412.6575.
|
18 |
陈恒, 王思懿, 李冠宇, 等. 基于四元数胶囊网络的知识图谱补全模型. 计算机工程, 2022, 48(2): 40-46, 64.
URL
|
|
CHEN H, WANG S Y, LI G Y, et al. Knowledge graph completion model based on quaternion capsule network. Computer Engineering, 2022, 48(2): 40-46, 64.
URL
|
19 |
XIE R, LIU Z, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York, USA: AAAI Press, 2016: 1-7.
|
20 |
|
21 |
DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2019: 4171-4186.
|
22 |
PETERS M E, NEUMANN M, LYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2018: 2227-2237.
|
23 |
|
24 |
|
25 |
|
26 |
KIM B, HONG T, KO Y, et al. Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain: [s. n. ], 2020: 1737-1743.
|
27 |
WANG B, SHEN T, LONG G, et al. Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the 2021 Web Conference. Washington D. C., USA: IEEE Press, 2021: 1737-1748.
|
28 |
WANG X Z, GAO T Y, ZHU Z C, et al. KEPLER: a unified model for knowledge embedding and pre-trained language representation. Transactions of the Association for Computational Linguistics, 2021, 9, 176- 194.
doi: 10.1162/tacl_a_00360
|
29 |
GUNEL B, DU J F, CONNEAU A, et al. Supervised contrastive learning for pre-trained language model fine-tuning[EB/OL]. [2023-04-26]. https://arxiv.org/abs/2011.01403
|
30 |
RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//Proceedings of the 38th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2021: 8748-8763.
|
31 |
LIU S, FAN H, QIAN S, et al. Hit: hierarchical transformer with momentum contrast for video-text retrieval[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 11915-11925.
|
32 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2020: 1597-1607.
|
33 |
GAO T, YAO X, CHEN D. SimCSE: simple contrastive learning of sentence embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. [S. l. ]: Association for Computational Linguistics, 2021: 6894-6910.
|
34 |
CHOI B, JANG D, KO Y. MEM-KGC: masked entity modeling for knowledge graph completion with pre-trained language model. IEEE Access, 2021, 9, 132025- 132032.
doi: 10.1109/ACCESS.2021.3113329
|
35 |
NGUYEN T D, NGUYEN D Q, PHUNG D. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg, USA: Association for Computational Linguistics, 2018: 327-333.
|
36 |
BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Washington D. C., USA: IEEE Press, 2019: 5185-5194.
|
37 |
LI L Y, ZHANG X, MA Y B, et al. A knowledge graph completion model based on contrastive learning and relation enhancement method. Knowledge-Based Systems, 2022, 256, 109889.
doi: 10.1016/j.knosys.2022.109889
|
38 |
ADNAN Z, SUMMAYA S, JUNDE C, et al. Learning knowledge graph embeddings by deep relational roto-reflection. Knowledge-Based Systems, 2022, 252, 109451.
doi: 10.1016/j.knosys.2022.109451
|
39 |
SOCHER R, CHEN D, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Washington D. C., USA: IEEE Press, 2013: 926-934.
|
40 |
MILLER G A. WordNet: a lexical database for English. Communications of the ACM, 1995, 38(11): 39- 41.
doi: 10.1145/219717.219748
|