[1] JI S X, PAN S R, CAMBRIA E, et al. A survey on knowledge graphs:representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2):494-514. [2] 王昊奋, 丁军, 胡芳槐, 等. 大规模企业级知识图谱实践综述[J]. 计算机工程, 2020, 46(7):1-13. WANG H F, DING J, HU F H, et al. Survey on large scale enterprise-level knowledge graph practices[J]. Computer Engineering, 2020, 46(7):1-13.(in Chinese) [3] 陶天一, 王清钦, 付聿炜, 等. 基于知识图谱的金融新闻个性化推荐算法[J]. 计算机工程, 2021, 47(6):98-103, 114. TAO T Y, WANG Q Q, FU Y W, et al. Personalized recommendation algorithm for financial news based on knowledge graph[J]. Computer Engineering, 2021, 47(6):98-103, 114.(in Chinese) [4] YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA:ACM Press, 2022:1434-1443. [5] 吴天波, 周欣, 程军军, 等. 基于位置和注意力联合表示的知识图谱问答[J]. 计算机工程, 2022, 48(8):98-104, 112. WU T B, ZHOU X, CHENG J J, et al. Knowledge graph question-answering based on joint location and attention representation[J]. Computer Engineering, 2022, 48(8):98-104, 112.(in Chinese) [6] SHEN T, ZHANG F, CHENG J W. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022, 255:109597. [7] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:2787-2795. [8] YAO L, MAO C, LUO Y. KG-BERT:BERT for knowledge graph completion[EB/OL].[2023-04-19]. https://arxiv.org/abs/1909.03193. [9] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:3111-3119. [10] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2014:1112-1119. [11] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. Palo Alto, USA:AAAI Press, 2015:2181-2187. [12] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2015:687-696. [13] 孟小艳, 蒋同海, 周喜, 等. 一种改进的自适应知识图谱嵌入式表示方法[J]. 计算机应用研究, 2021, 38(1):39-43. MENG X Y, JIANG T H, ZHOU X, et al. Improved adaptive embedding method for knowledge graph representation[J]. Application Research of Computers, 2021, 38(1):39-43.(in Chinese) [14] YANG B S, YIH W T, HE X D, et al. Embedding entities and relations for learning and inference in knowledge bases[EB/OL].[2023-04-11]. https://arxiv.org/abs/1412.6575. [15] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA:ACM Press, 2016:2071-2080. [16] BALAŽEVIĆ I, ALLEN C, HOSPEDALES T M. TuckER:tensor factorization for knowledge graph completion[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Philadelphia, USA:Association for Computational Linguistics, 2019:5185-5194. [17] 赵博,王宇嘉,倪骥.知识图谱的增强CP分解链接预测方法[J]. 计算机应用研究, 2023, 40(5):1396-1401. ZHAO B, WANG Y J, NI J. Enhanced CP decomposition link prediction method for knowledge graph[J]. Computer Application Research, 2023, 40(5):1396-1401.(in Chinese) [18] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 13th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA:AAAI Press, 2018:1811-1818. [19] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[EB/OL].[2023-04-19]. https://arxiv.org/abs/1911.03082. [20] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[EB/OL].[2023-04-19]. https://arxiv.org/abs/1712.02121. [21] SOCHER R, CHEN D Q, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2013:926-934 [22] ZHANG Z Q, WANG J, YE J P, et al. Rethinking graph convolutional networks in knowledge graph completion[C]//Proceedings of ACM Web Conference 2022. New York, USA:ACM Press, 2022:798-807. [23] 邹长龙, 安敬民, 李冠宇. 基于邻域聚合与CNN的知识图谱实体类型补全[J]. 计算机工程, 2023, 49(3):134-141. ZOU C L, AN J M, LI G Y. Knowledge graph entity type completion based on neighborhood aggregation and CNN[J]. Computer Engineering, 2023, 49(3):134-141.(in Chinese) [24] ZHANG Y, YAO Q, SHAO Y, et al. NSCaching:simple and efficient negative sampling for knowledge graph embedding[C]//Proceedings of the 35th International Conference on Data Engineering. Washington D.C., USA:IEEE Press, 2019:614-625. [25] KIM B, HONG T, KO Y, et al. Multi-task learning for knowledge graph completion with pre-trained language models[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA:International Committee on Computational Linguistics, 2020:1737-1743. [26] LI D, YI M, HE Y Q. LP-BERT:multi-task pre-training knowledge graph BERT for link prediction[EB/OL].[2023-04-19]. https://arxiv.org/abs/2201.04843v1. [27] ZKE A, GROSS S, MASSA F, et al. PyTorch:an imperative style, high performance deep learning library[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2019, 32:18-30. [28] TOUTANOVA K, CHEN D Q, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA:Association for Computational Linguistics, 2015:1499-1509. [29] WANG F, LIU H P. Understanding the behaviour of contrastive loss[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2021:2495-2504. |