作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (8): 85-97. doi: 10.19678/j.issn.1000-3428.0061622

• 人工智能与模式识别 • 上一篇    下一篇

多策略调和的布谷鸟搜索算法

彭虎1, 李源汉1, 邓长寿1, 吴志健2   

  1. 1. 九江学院 计算机与大数据科学学院, 江西九江 332005;
    2. 武汉大学 计算机学院, 武汉 430072
  • 收稿日期:2021-05-12 修回日期:2021-07-30 发布日期:2021-09-09
  • 作者简介:彭虎(1981-),男,副教授、博士,主研方向为智能计算及应用;李源汉,本科生;邓长寿、吴志健,教授、博士。
  • 基金资助:
    国家自然科学基金(61763019);江西省自然科学基金(20202BABL202019)。

Multi-Strategy Reconciled Cuckoo Search Algorithm

PENG Hu1, LI Yuanhan1, DENG Changshou1, WU Zhijian2   

  1. 1. School of Computer and Big Data Science, Jiujiang University, Jiujiang, Jiangxi 332005, China;
    2. School of Computer Science, Wuhan University, Wuhan 430072, China
  • Received:2021-05-12 Revised:2021-07-30 Published:2021-09-09

摘要: 布谷鸟搜索(CS)算法是一种新型的群智能算法,结构简单且寻优能力较强,但存在勘探与开采不平衡以及易陷入局部极值的问题。提出一种多策略调和的布谷鸟搜索(MSRCS)算法,基于概率规则选择由自适应步长和改进解更新方法组成的调和策略对布谷鸟个体进行更新,其中自适应步长引导布谷鸟在更好的方向上寻优,3种改进的解更新方法分别从自身邻域、当前最优个体和随机位置3个角度对勘探和开采进行调和,从而提升全局搜索和局部搜索在迭代过程中的适应性。在CEC2013测试集的28个基准函数上的实验结果表明,MSRCS算法至少有12个测试函数优于原始CS及其7种改进算法且排名第一,在求解单峰、多峰和组合函数问题时寻优能力更强,同时相比于3种经典群智能优化算法具有更快的收敛速度和更高的解精度。

关键词: 群智能算法, 布谷鸟搜索算法, 自适应步长, 解更新方法, 全局搜索

Abstract: The Cuckoo Search(CS) Algorithm is a new swarm intelligence optimization algorithm with a simple structure and good searching ability.Its disadvantages include an imbalance between exploration and exploitation and easily falling into the local optimum.To solve these problems, we propose a Multi-Strategy Reconciled Cuckoo Search(MSRCS) algorithm.The proposed algorithm is based on probability rules in selecting reconciliatory strategies, including a self-adaptive step size and modified solution-update methods to realize individual updates.The self-adaptive step size leads Cuckoos in a better direction.Three modified solution-update methods are searched from their respective neighborhoods, move toward the contemporary optimum, and generate a random solution to balance exploration and exploitation.This algorithm effectively improves the adjusting ability of global and local searches during the iteration process.The experimental results obtained using 28 benchmark functions of the CEC2013 test show that MSRCS has at least 12 functions that are superior to the original CS and its seven improved algorithms and ranks first, indicating better optimization ability in solving unimodal, multimodal, and combinatorial function problems.In addition, MSRCS yields better convergence speed and solution accuracy than three classical swarm intelligence optimization algorithms.

Key words: swarm intelligence algorithm, Cuckoo Search(CS) algorithm, self-adaptive step size, solution-update method, global search

中图分类号: