[1] PENG X, FENG J S, XIAO S J, et al.Structured autoencoders for subspace clustering[J].IEEE Transactions on Image Processing, 2018, 27:5076-5086. [2] CHEN M H, JAYAKUMAR B, GOPALAKRISHNAN P, et al.Deep clustering with measure propagation[EB/OL].[2021-08-05].https://arxiv.org/abs/2104.08967. [3] MACQUEEN J.Some methods for classification and analysis of multivariate observations[EB/OL].[2021-08-05].https://digitalassets.lib.berkeley.edu/math/ucb/text/math_s5_v1_article-17.pdf. [4] JOHNSON S C.Hierarchical clustering schemes[J].Psychometrika, 1967, 32(3):241-254. [5] WHITE S, SMYTH P.A spectral clustering approach to finding communities in graphs[C]//Proceedings of 2005 SIAM International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2005:274-285. [6] 孙登第, 凌媛, 丁转莲, 等.基于稀疏子空间聚类的多层网络社团检测[J].计算机工程, 2021, 47(10):52-60. SUN D D, LING Y, DING Z L, et al.Multi-layer network community detection based on sparse subspace clustering[J].Computer Engineering, 2021, 47(10):52-60.(in Chinese) [7] LIU G C, LIN Z C, YAN S C, et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1):171-184. [8] VIDAL R, FAVARO P.Low Rank Subspace Clustering (LRSC)[J].Pattern Recognition Letters, 2014, 43:47-61. [9] ELHAMIFAR E, VIDAL R.Sparse subspace clustering:algorithm, theory, and applications[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11):2765-2781. [10] PATEL V M, VIDAL R.Kernel sparse subspace clustering[C]//Proceedings of 2014 IEEE International Conference on Image Processing.Washington D.C., USA:IEEE Press, 2014:2849-2853. [11] NIE F P, WANG X Q, HUANG H.Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2014:977-986. [12] NIE F P, WU D Y, WANG R, et al.Self-weighted clustering with adaptive neighbors[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3428-3441. [13] HUANG Q J, ZHANG Y, PENG H, et al.Deep subspace clustering to achieve jointly latent feature extraction and discriminative learning[J].Neurocomputing, 2020, 404:340-350. [14] JI P, ZHANG T, LI H D, et al.Deep subspace clustering networks[EB/OL].[2021-08-05].https://arxiv.org/abs/1709.02508. [15] XIE J Y, GIRSHICK R, FARHADI A.Unsupervised deep embedding for clustering analysis[EB/OL].[2021-08-05].https://arxiv.org/abs/1511.06335. [16] LI X L, ZHANG R, WANG Q, et al.Autoencoder constrained clustering with adaptive neighbors[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1):443-449. [17] SEO J, KOO J, JEON T.Deep closed-form subspace clustering[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop.Washington D.C., USA:IEEE Press, 2019:633-641. [18] DIZAJI K G, HERANDI A, DENG C, et al.Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:5736-5745. [19] JIANG Z, ZHENG Y, TAN H C, et al.Variational deep embedding:a generative approach to clustering[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Washington D.C., USA:IEEE Press, 2017:1965-1972. [20] PENG X, TANG H J, ZHANG L, et al.A unified framework for representation-based subspace clustering of out-of-sample and large-scale data[J].IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(12):2499-2512. [21] PARSA M G, ZARE H, GHATEE M.Unsupervised feature selection based on adaptive similarity learning and subspace clustering[J].Engineering Applications of Artificial Intelligence, 2020, 95:103855. [22] ZHU P F, ZHU W C, HU Q H, et al.Subspace clustering guided unsupervised feature selection[J].Pattern Recognition, 2017, 66:364-374. [23] BOLLOBÁS B.Modern graph theory[M].Berlin, Germany:Springer, 2013. [24] FAN K.On a theorem of weyl concerning eigenvalues of linear transformations I[J].Proceedings of the National Academy of Sciences of the United States of America, 1949, 35(11):652-655. [25] LUO Z Q, YU W.An introduction to convex optimization for communications and signal processing[J].IEEE Journal on Selected Areas in Communications, 2006, 24(8):1426-1438. |