作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程

• 人工智能及识别技术 • 上一篇    下一篇

基于飞蛾-烛火优化算法的贝叶斯网络结构学习

包义钊,殷保群,曹杰,姚进发   

  1. (中国科学技术大学 自动化系,合肥 230027)
  • 收稿日期:2017-01-18 出版日期:2018-01-15 发布日期:2018-01-15
  • 作者简介:包义钊(1991—),男,硕士研究生,主研方向为贝叶斯网络应用、贝叶斯网络结构学习;殷保群,教授、博士;曹杰、姚进发,博士研究生。
  • 基金资助:
    国家自然科学基金“三网融合业务接入系统的分析、建模与调控”(61233003)。

Bayesian Network Structure Learning Based on Moth-flame Optimization Algorithm

BAO Yizhao,YIN Baoqun,CAO Jie,YAO Jinfa   

  1. (Department of Automation,University of Science and Technology of China,Hefei 230027,China)
  • Received:2017-01-18 Online:2018-01-15 Published:2018-01-15

摘要: 目前结构学习的算法普遍存在收敛性差、精确度低、易陷入局部最优等问题。为此,提出一种新的网络结构学习算法。通过保留飞蛾-烛火优化算法的整体框架,借鉴遗传算法的杂交、变异等操作,替换原算法的位置更新方法。变异操作时考虑节点间的互信息,对不同节点采取不同的变异动作,保障结构返回的稳定性。实验结果表明,该算法能够较快地学习到评分最优的网络结构,且获得的结构和标准的网络结构最相似。

关键词: 贝叶斯网络, 全局搜索, 飞蛾-烛火优化算法, 遗传算法, 互信息

Abstract: At present,Bayesian structure learning algorithms commonly have the disadvantages of poor convergence,low accuracy and easily trapping in the local optimum.A novel structure learning algorithm is proposed in this paper,which retained the sort framework of Moth-flame Optimization(MFO),defines the crossover operator and variation operator by borrowing the ideas from genetic algorithm to replace the location update strategy of MFO.The mutual information between nodes is considered during mutation period to increase the possibility of returning a similar solution.Simulation results show that the novel algorithm can learn the optimal Bayesian network structure quickly and the returned outcome is more approximate to the standard networks.

Key words: Bayesian network, global search, Moth-flame Optimization(MFO) algorithm, Genetic Algorithm(GA), mutual information

中图分类号: