[1] HAN X, GAO T Y, LIN Y K, et al.More data, more relations, more context and more openness:a review and outlook for relation extraction[EB/OL].[2021-09-10].https://arxiv.org/abs/2004.03186. [2] XIANG W, WANG B.A survey of event extraction from text[J].IEEE Access, 2019, 7:173111-173137. [3] DIEFENBACH D, LOPEZ V, SINGH K, et al.Core techniques of question answering systems over knowledge bases:a survey[J].Knowledge and Information Systems, 2018, 55(3):529-569. [4] LI J, SUN A X, HAN J L, et al.A survey on deep learning for named entity recognition[J].IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1):50-70. [5] KIM Y.Convolutional neural networks for sentence classification[EB/OL].[2021-09-10].https://arxiv.org/abs/1408.5882. [6] LIU P F, QIU X P, HUANG X J.Recurrent neural network for text classification with multi-task learning[EB/OL].[2021-09-10].https://arxiv.org/abs/1605.05101. [7] GUI T, MA R, ZHANG Q, et al.CNN-based Chinese NER with lexicon rethinking[EB/OL].[2021-09-10].https://www.researchgate.net/publication/334844205_CNN-Based_Chinese_NER_with_Lexicon_Rethinking. [8] LIU W, XU T, XU Q, et al.An encoding strategy based word-character LSTM for Chinese NER[C]//Proceedings of 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1(Long and Short Papers).Stroudsburg, USA:Association for Computational Linguistics, 2019:2379-2389. [9] SUI D B, CHEN Y B, LIU K, et al.Leverage lexical knowledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language and the 9th International Joint Conference on Natural Language Stroudsburg, USA:Association for Computational Linguistics, 2019:3830-3840. [10] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al.Graph attention networks[EB/OL].[2021-09-10].https://arxiv.org/abs/1710.10903. [11] BRODY S, ALON U, YAHAV E.How attentive are graph attention networks?[EB/OL].[2021-09-10].https://arxiv.org/abs/2105.14491. [12] WOODWARD R J, CHOUEIRY B Y.Weight-based variable ordering in the context of high-level consistencies[EB/OL].[2021-09-10].https://www.xueshufan.com/publication/2767443280. [13] 杨飘, 董文永.基于BERT嵌入的中文命名实体识别方法[J].计算机工程, 2020, 46(4):40-45, 52. YANG P, DONG W Y.Chinese named entity recognition method based on BERT embedding[J].Computer Engineering, 2020, 46(4):40-45, 52.(in Chinese) [14] HUANG Z H, XU W, YU K.Bidirectional LSTM-CRF models for sequence tagging.[EB/OL].[2021-09-10].https://arxiv.org/abs/1508.019911. [15] LAFFERTY J, MCCALLUM A, PEREIRA F.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning.San Francisco, USA:Morgan Kaufmann Publishers, 2001:282-289. [16] LEVOW G A.The 3rd international Chinese language processing bakeoff:word segmentation and named entity recognition[EB/OL].[2021-09-10].https://www.xueshufan.com/publication/2252066972. [17] WEISCHEDEL R, PRADHAN S, RAMSHAW L, et al.Ontonotes release 4.0[EB/OL].[2021-09-10].https://www.researchgate.net/publication/254378913_OntoNotes_Release_20. [18] ZHANG Y, YANG J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).Stroudsburg, USA:Association for Computational Linguistics, 2018:1554-1564. [19] PENG N Y, DREDZE M.Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language.Stroudsburg, USA:Association for Computational Linguistics, 2015:548-554. [20] YU S, DUAN H, WU Y.Corpus of multi-level Processing for Modern Chinese[EB/OL].[2021-09-10].https://doi.org/10.18170/DVN/SEYRX5. [21] LI S, ZHAO Z, HU R F, et al.Analogical reasoning on Chinese morphological and semantic relations[EB/OL].[2021-09-10].https://arxiv.org/abs/1805.06504. [22] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research, 2014, 15(1):1929-1958. [23] KINGMA D P, BA J.Adam:a method for stochastic optimization[EB/OL].[2021-09-10].https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K. [24] GUI T, ZOU Y C, ZHANG Q, et al.A lexicon-based graph neural network for Chinese NER[C]//Proceedings of 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg, USA:Association for Computational Linguistics, 2019:1040-1050. [25] LI X N, YAN H, QIU X P, et al.FLAT:Chinese NER using flat-lattice transformer[EB/OL].[2021-09-10].https://arxiv.org/abs/2004.11795. |