作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2022, Vol. 48 ›› Issue (10): 298-305. doi: 10.19678/j.issn.1000-3428.0063055

• 开发研究与工程应用 • 上一篇    下一篇

基于图注意力网络字词融合的中文命名实体识别

宋旭晖1, 于洪涛2, 李邵梅2   

  1. 1. 郑州大学 网络空间安全学院, 郑州 450001;
    2. 战略支援部队信息工程大学 信息技术研究所, 郑州 450002
  • 收稿日期:2021-10-27 修回日期:2021-12-15 发布日期:2021-12-17
  • 作者简介:宋旭晖(1999—),女,硕士研究生,主研方向为自然语言处理;于洪涛,研究员、博士;李邵梅,副研究员、博士。
  • 基金资助:
    国家自然科学基金青年科学基金项目(62002384);国家重点研发计划项目(2016QY03D0502);郑州市协同创新重大专项(162/32410218)。

Chinese Named Entity Recognition Based on Word Fusion of Graph Attention Network

SONG Xuhui1, YU Hongtao2, LI Shaomei2   

  1. 1. School of Cyber Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
    2. Institute of Information Technology, PLA Strategic Support Force Information Engineering University, Zhengzhou 450002, China
  • Received:2021-10-27 Revised:2021-12-15 Published:2021-12-17

摘要: 命名实体识别指识别文本中具有特定意义的实体,是自然语言处理诸多下游任务的重要基石。在命名实体识别任务中,协同图网络(CGN)模型通过引入多个图注意力网络获得较强的知识整合能力及较高的处理速度,但CGN模型在嵌入层中没有充分利用词边界信息,且采用的传统静态图注意力网络影响了图注意力的表达能力。在对CGN模型的图注意力网络进行改进的基础上,提出一种中文命名实体识别新模型,在嵌入层融入词语的分词信息,以生成包含词边界信息的字向量,从而充分利用词边界信息。通过在编码层使用BiLSTM模型获取文本的上下文信息,采用改进后的图注意力网络提取文本特征,并通过优化传统图注意力网络中相关系数的计算方式,增强模型的特征提取能力。最后,利用条件随机场对文本进行解码,从而实现对实体的标注。实验结果表明,该模型相比CGN模型在MSRA、OntoNotes4.0、Weibo数据集上的F1值分别提升了0.67%、3.16%、0.16%,验证了其在中文命名实体识别任务上的有效性。

关键词: 自然语言处理, 中文命名实体识别, 图注意力网络, 字词融合, 分词信息

Abstract: Named entity recognition refers to the recognition of entities with specific meanings in texts.It is an important cornerstone of many downstream tasks in natural language processing.In the task of named entity recognition, the Collaborative Graph Network (CGN) model gains strong knowledge integration capabilities and efficient processing speed by introducing a multiple Graph Attention Network (GAT).However, this model does not make full use of word boundary information in the embedding layer, and use of the traditional static GAT model affects the expressive ability of graph attention.On the basis of improving the GAT of CGN mode, this paper proposes a new Chinese Named Entity Recognition(NER) model.The method firstly incorporates word segmentation information in an embedding layer to generate word vectors containing word boundary information, thereby improving the use of word boundary information.Secondly, it uses a BiLSTM model to initially obtain the context information of the text, and then uses the improved GAT(GATv2) to extract text features by optimizing the calculation method of the correlation coefficient in the traditional GAT.Finally, a conditional random field is used for decoding to realize the labeling of the entity.The experimental results show that compared with CGN model, the F1 value of the proposed model on MSRA, Weibo datasets is increased by 0.67%, 3.16% and 0.16% respectively, which verifies the effectiveness of the model in the task of Chinese named entity recognition.

Key words: natural language processing, Chinese Named Entity Recognition(NER), Graph Attention Network(GAT), word fusion, word segmentation information

中图分类号: