1 |
HUANG G, YUAN M, LI C S, et al. Personalized knowledge recommendation based on knowledge graph in petroleum exploration and development. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34 (10): 2059033.
doi: 10.1142/S0218001420590338
|
2 |
ZHOU X G, GONG R B, SHI F G, et al. PetroKG: construction and application of knowledge graph in upstream area of PetroChina. Journal of Computer Science and Technology, 2020, 35 (2): 368- 378.
doi: 10.1007/s11390-020-9966-7
|
3 |
TANG X M, FENG Z Q, XIAO Y T, et al. Construction and application of an ontology-based domain-specific knowledge graph for petroleum exploration and development. Geoscience Frontiers, 2023, 14 (5): 101426.
doi: 10.1016/j.gsf.2022.101426
|
4 |
张富利, 张恩莉, 向永慧, 等. 知识图谱技术在石油天然气勘探开发知识管理中的应用探讨. 信息系统工程, 2020, (1): 128- 131.
URL
|
|
ZHANG F L, ZHANG E L, XIANG Y H, et al. Discussion on the application of knowledge mapping technology in knowledge management of oil and gas exploration and development. China CIO News, 2020, (1): 128- 131.
URL
|
5 |
杨勇, 黄文俊, 王铁成, 等. 梦想云数据连环湖建设研究. 中国石油勘探, 2020, 25 (5): 82- 88.
doi: 10.3969/j.issn.1672-7703.2020.05.011
|
|
YANG Y, HUANG W J, WANG T C, et al. Research on construction of data interlinked lakes of E & P dream cloud. China Petroleum Exploration, 2020, 25 (5): 82- 88.
doi: 10.3969/j.issn.1672-7703.2020.05.011
|
6 |
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2013: 2787-2795.
|
7 |
CHEN M H, TIAN Y T, YANG M H, et al. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2017: 1511-1517.
|
8 |
HAO Y C, ZHANG Y Z, HE S Z, et al. A joint embedding method for entity alignment of knowledge bases[C]//Proceedings of China Conference on Knowledge Graph and Semantic Computing. Berlin, Germany: Springer, 2016: 3-14.
|
9 |
SUN Z Q, HU W, LI C K. Cross-lingual entity alignment via joint attribute-preserving embedding[C]//Proceedings of International Semantic Web Conference. Berlin, Germany: Springer, 2017: 628-644.
|
10 |
SUN Z Q, HU W, ZHANG Q H, et al. Bootstrapping entity alignment with knowledge graph embedding[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 4396-4402.
|
11 |
WANG Z C, LV Q S, LAN X H, et al. Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2018: 349-357.
|
12 |
|
13 |
MAO X, WANG W T, XU H M, et al. MRAEA: an efficient and robust entity alignment approach for cross-lingual knowledge graph[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York, USA: ACM Press, 2020: 420-428.
|
14 |
|
15 |
MAO X, WANG W T, XU H M, et al. Relational reflection entity alignment[C]//Proceedings of the 29th International Conference on Information & Knowledge Management. New York, USA: ACM Press, 2020: 1095-1104.
|
16 |
|
17 |
GAO J L, LIU X Y, CHEN Y B, et al. MHGCN: multiview highway graph convolutional network for cross-lingual entity alignment. Tsinghua Science and Technology, 2022, 27 (4): 719- 728.
doi: 10.26599/TST.2021.9010056
|
18 |
ZHU R B, MA M, WANG P. RAGA: relation-aware graph attention networks for global entity alignment[C]//Proceedings of Conference on Advances in Knowledge Discovery and Data Mining. Berlin, Germany: Springer, 2021: 501-513.
|
19 |
LIN X Y, HAIHONG E, SONG W Y, et al. EchoEA: echo information between entities and relations for entity alignment[EB/OL]. [2022-12-23]. https://arxiv.org/abs/2107.03054.
|
20 |
谭元珍, 李晓楠, 李冠宇. 基于邻域聚合的实体对齐方法. 计算机工程, 2022, 48 (6): 65- 72.
URL
|
|
TAN Y Z, LI X N, LI G Y. Entity alignment method based on neighborhood aggregation. Computer Engineering, 2022, 48 (6): 65- 72.
URL
|
21 |
WANG H C, WANG Y N, LI J F, et al. Degree aware based adversarial graph convolutional networks for entity alignment in heterogeneous knowledge graph. Neurocomputing, 2022, 487 (28): 99- 109.
doi: 10.1016/j.neucom.2022.02.002
|
22 |
孙亚茹, 杨莹, 王永剑. 基于知信图卷积神经网络的开放域知识图谱自动构建模型. 计算机工程, 2022, 48 (10): 116- 122.
URL
|
|
SUN Y R, YANG Y, WANG Y J. Automatic construction model of open domain knowledge map based on convolutional neural network of knowledge map. Computer Engineering, 2022, 48 (10): 116- 122.
URL
|
23 |
徐凡钧. 基于知识图谱的测井解释模型智能优选方法研究[D]. 大庆: 东北石油大学, 2022.
|
|
XU F J. Research on intelligent optimization method of logging interpretation model based on knowledge map[D]. Daqing: Northeast Petroleum University, 2022. (in Chinese)
|
24 |
薛广有. 油藏领域知识图谱构建研究[D]. 大庆: 东北石油大学, 2021.
|
|
XUE G Y. Study on the construction of knowledge map in reservoir field[D]. Daqing: Northeast Petroleum University, 2021. (in Chinese)
|
25 |
文必龙, 薛广有. 面向油藏地质领域的知识图谱构建研究. 计算机技术与发展, 2021, 31 (12): 204- 210.
doi: 10.3969/j.issn.1673-629X.2021.12.034
|
|
WEN B L, XUE G Y. Research on knowledge graph construction in reservoir geology. Computer Technology and Development, 2021, 31 (12): 204- 210.
doi: 10.3969/j.issn.1673-629X.2021.12.034
|
26 |
朱小龙. 地质文本中油气藏特征提取及成藏知识图谱构建研究[D]. 武汉: 中国地质大学, 2021.
|
|
ZHU X L. Study on feature extraction of oil and gas reservoirs in geological texts and construction of reservoir-forming knowledge map[D]. Wuhan: China University of Geosciences, 2021. (in Chinese)
|
27 |
刘国强, 龚仁彬, 石玉江, 等. 油气层测井知识图谱构建及其智能识别方法. 石油勘探与开发, 2022, 49 (3): 502- 512.
doi: 10.11698/PED.20210750
|
|
LIU G Q, GONG R B, SHI Y J, et al. Construction of well logging knowledge graph and intelligent identification method of hydrocarbon-bearing formation. Petroleum Exploration and Development, 2022, 49 (3): 502- 512.
doi: 10.11698/PED.20210750
|
28 |
PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of Conference on Empirical Methods in Natural Language Processing. Stroudsburg, USA: Association for Computational Linguistics, 2014: 1532-1543.
|
29 |
|