[1] SHANG Y M, HUANG H Y, MAO X L. OneRel:joint entity and relation extraction with one module in one step[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10):11285-11293. [2] TANG G G, LI P, HE Y P, et al. Latent graph learning with dual-channel attention for relation extraction[J]. Knowledge-Based Systems, 2022, 252:109471. [3] TIAN Y H, SONG Y, XIA F. Improving relation extraction through syntax-induced pre-training with dependency masking[M]//MURESAN S, NAKOV P, VILLAVICENCIO A. Findings of the Association for Computational Linguistics:ACL 2022. Stroudsburg, USA:Association for Computational Linguistics, 2022:1875-1886. [4] CHEN Y B, ZHANG Y Q, HUANG Y F. Learning reasoning patterns for relational triple extraction with mutual generation of text and graph[M]//MURESAN S, NAKOV P, VILLAVICENCIO A. Findings of the Association for Computational Linguistics:ACL 2022. Stroudsburg, USA:Association for Computational Linguistics, 2022:1638-1647. [5] RIEDEL S, YAO L M, MCCALLUM A. Modeling relations and their mentions without labeled text[M]//BALCÁZAR J L, BONCHI F, GIONIS A, et al. Machine learning and knowledge discovery in databases. Berlin, Germany:Springer, 2010:148-163. [6] GARDENT C, SHIMORINA A, NARAYAN S, et al. Creating training corpora for NLG micro-planning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2017:179-188. [7] PAPALUCA A, KREFL D, SUOMINEN H, et al. Pretrained knowledge base embeddings for improved sentential relation extraction[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics:Student Research. Stroudsburg, USA:Association for Computational Linguistics, 2022:373-382. [8] 余杰, 纪斌, 吴宏明, 等. 一种基于span的实体和关系联合抽取方法[J]. 计算机工程与科学, 2022, 44(3):502-508. YU J, JI B, WU H M, et al. A span-based joint entity and relation extraction method[J]. Computer Engineering & Science, 2022, 44(3):502-508.(in Chinese) [9] MA Y M, HIRAOKA T, OKAZAKI N. Joint entity and relation extraction based on table labeling using convolutional neural networks[C]//Proceedings of the 6th Workshop on Structured Prediction for NLP. Stroudsburg, USA:Association for Computational Linguistics, 2022:11-21. [10] LAI T Q, CHENG L L, WANG D P, et al. RMAN:relational multi-head attention neural network for joint extraction of entities and relations[J]. Applied Intelligence, 2022, 52(3):3132-3142. [11] SUN K, ZHANG R C, MENSAH S, et al. Progressive multi-task learning with controlled information flow for joint entity and relation extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15):13851-13859. [12] ZHAO T Y, YAN Z, CAO Y B, et al. A unified multi-task learning framework for joint extraction of entities and relations[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(16):14524-14531. [13] ZHAO T Y, YAN Z, CAO Y B, et al. Asking effective and diverse questions:a machine reading comprehension based framework for joint entity-relation extraction[C]//Proceedings of the 29th International Joint Conferences on Artificial Intelligence. Yokohama, Japan:International Joint Conferences on Artificial Intelligence Organization, 2021:3948-3954. [14] FU T J, LI P H, MA W Y. GraphRel:modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2019:1409-1418. [15] ZHENG H Y, WEN R, CHEN X, et al. PRGC:potential relation and global correspondence based joint relational triple extraction[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers). Stroudsburg, USA:Association for Computational Linguistics, 2021:6225-6235. [16] WANG Y C, YU B W, ZHANG Y Y, et al. TPLinker:single-stage joint extraction of entities and relations through token pair linking[C]//Proceedings of the 28th International Conference on Computational Linguistics. Stroudsburg, USA:International Committee on Computational Linguistics, 2020:1572-1582. [17] LI H, ISLAM M T, HUANGLIANG K H, et al. SETFF:a semantic enhanced table filling framework for joint entity and relation extraction[C]//Proceedings of Pacific Rim International Conference on Artificial Intelligence. Berlin, Germany:Springer, 2022:169-182. [18] ZHAO F B, JIANG Z R, KANG Y Y, et al. Adjacency list oriented relational fact extraction via adaptive multi-task learning[M]//ZONG C Q, XIA F, LI W J, et al. Findings of the Association for Computational Linguistics:ACL-IJCNLP 2021. Stroudsburg, USA:Association for Computational Linguistics, 2021:3075-3087. [19] 李智杰, 韩瑞瑞, 李昌华, 等. 融合预训练模型和注意力的实体关系抽取方法[J]. 计算机科学与探索, 2023, 17(6):1453-1462. LI Z J, HAN R R, LI C H, et al. Entity relation extraction method integrating pre-trained model and attention[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6):1453-1462.(in Chinese) [20] 衡红军, 苗菁. 语义与句法信息加强的二元标记实体关系联合抽取[J]. 计算机工程, 2023, 49(4):77-84. HENG H J, MIAO J. Joint extraction of binary tagging entity relation for enhanced semantic and syntactic information[J]. Computer Engineering, 2023, 49(4):77-84.(in Chinese) [21] 禹克强, 黄芳, 吴琪, 等. 基于双向语义的中文实体关系联合抽取方法[J]. 计算机工程, 2023, 49(1):92-99, 112. YU K Q, HUANG F, WU Q, et al. Joint extraction method for Chinese entity relationship based on bidirectional semantics[J]. Computer Engineering, 2023, 49(1):92-99, 112.(in Chinese) [22] KENTON J D M W C, TOUTANOVA L K. BERT:pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of NAACL-HLT 2019. Minneapolis, USA:[s. n.], 2019:4171-4186. [23] WEI Z P, SU J L, WANG Y, et al. A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, USA:Association for Computational Linguistics, 2020:1476-1488. [24] ZHAO K, XU H, CHENG Y, et al. Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J]. Knowledge-Based Systems, 2021, 219:106888. [25] HUANG H, SHANG Y M, SUN X, et al. Three birds, one stone:a novel translation based framework for joint entity and relation extraction[J]. Knowledge-Based Systems, 2022, 236:107677. |