1 |
WANG W Y, PAN S J. Integrating deep learning with logic fusion for information extraction. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 9225- 9232.
doi: 10.1609/aaai.v34i05.6460
|
2 |
ZHANG N Y, YE H B, DENG S M, et al. Contrastive information extraction with generative Transformer. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29, 3077- 3088.
doi: 10.1109/TASLP.2021.3110126
|
3 |
LAI T Q, CHENG L L, WANG D P, et al. RMAN: relational multi-head attention neural network for joint extraction of entities and relations. Applied Intelligence, 2022, 52(3): 3132- 3142.
doi: 10.1007/s10489-021-02600-2
|
4 |
车海燕, 冯铁, 张家晨, 等. 面向中文自然语言文档的自动知识抽取方法. 计算机研究与发展, 2013, 50(4): 834- 842.
URL
|
|
CHE H Y, FENG T, ZHANG J C, et al. Automatic knowledge extraction from Chinese natural language documents. Journal of Computer Research and Development, 2013, 50(4): 834- 842.
URL
|
5 |
ALANI H, KIM S, MILLARD D E, et al. Automatic ontology-based knowledge extraction from Web documents. IEEE Intelligent Systems, 2003, 18(1): 14- 21.
doi: 10.1109/MIS.2003.1179189
|
6 |
DO P, PHAN T H V. Developing a BERT based triple classification model using knowledge graph embedding for question answering system. Applied Intelligence, 2022, 52(1): 636- 651.
doi: 10.1007/s10489-021-02460-w
|
7 |
CHEN X C, YANG Z Y, LIANG N Y, et al. Co-attention fusion based deep neural network for Chinese medical answer selection. Applied Intelligence, 2021, 51(10): 6633- 6646.
doi: 10.1007/s10489-021-02212-w
|
8 |
ZHANG J, YUAN J, GUO H, et al. Integrating deep learning with first order logic for solving kinematic problems. Applied Intelligence, 2022, 52(3): 11808- 11826.
|
9 |
HE B, YU X G, JIAN P P, et al. A relation based algorithm for solving direct current circuit problems. Applied Intelligence, 2020, 50(7): 2293- 2309.
doi: 10.1007/s10489-020-01667-7
|
10 |
|
11 |
|
12 |
|
13 |
PENG N Y, DREDZE M. Improving named entity recognition for Chinese social media with word segmentation representation learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. [S.l.]: Association for Computational Linguistics, 2016: 149-155.
|
14 |
PENG N Y, DREDZE M. Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of 2015 Conference on Empirical Methods in Natural Language Processing. [S.l.]: Association for Computational Linguistics, 2015: 548-554.
|
15 |
|
16 |
|
17 |
KONG Z Q, TANG B P, DENG L, et al. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units. Renewable Energy, 2020, 146, 760- 768.
doi: 10.1016/j.renene.2019.07.033
|
18 |
|
19 |
|
20 |
SONG C J, XIONG Y, HUANG W C, et al. Joint self-attention and multi-embeddings for Chinese named entity recognition[C]//Proceedings of the 6th International Conference on Big Data Computing and Communications. Washington D. C., USA: IEEE Press, 2020: 76-80.
|
21 |
CHEN A G, YIN C L. CRW-NER: exploiting multiple embeddings for Chinese named entity recognition[C]//Proceedings of the 4th International Conference on Artificial Intelligence and Big Data. Washington D. C., USA: IEEE Press, 2021: 520-524.
|
22 |
|
23 |
|
24 |
TANG Z, WAN B Y, YANG L. Word-character graph convolution network for Chinese named entity recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2020, 28, 1520- 1532.
doi: 10.1109/TASLP.2020.2994436
|
25 |
|
26 |
|
27 |
WU F Z, LIU J X, WU C H, et al. Neural Chinese named entity recognition via CNN-LSTM-CRF and joint training with word segmentation[EB/OL]. [2022-05-05]. https://arxiv.org/pdf/1905.01964.pdf.
|
28 |
|
29 |
|
30 |
张志昌, 周侗, 张瑞芳, 等. 融合双向GRU与注意力机制的医疗实体关系识别. 计算机工程, 2020, 46(6): 296- 302.
URL
|
|
ZHANG Z C, ZHOU T, ZHANG R F, et al. Medical entity relation recognition combining bidirectional GRU and attention. Computer Engineering, 2020, 46(6): 296- 302.
URL
|
31 |
顾亦然, 霍建霖, 杨海根, 等. 基于BERT的电机领域中文命名实体识别方法. 计算机工程, 2021, 47(8): 78-83, 92
URL
|
|
GU Y R, HUO J L, YANG H G, et al. BERT-based Chinese named entity recognition method in motor field. Computer Engineering, 2021, 47(8): 78-83, 92
URL
|
32 |
何阳宇, 晏雷, 易绵竹, 等. 融合CRF与规则的老挝语军事领域命名实体识别方法. 计算机工程, 2020, 46(8): 297- 304.
URL
|
|
HE Y Y, YAN L, YI M Z, et al. Named entitiy recognition method for Laotian in military field combining CRF and rules. Computer Engineering, 2020, 46(8): 297- 304.
URL
|
33 |
LAFFERTY J D, MCCALLUM A, PEREIRA F C N. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning. New York, USA: ACM Press, 2001: 282-289.
|
34 |
|