[1] 朱海琦, 李宏, 李定文.基于单幅图像学习的生成对抗网络模型[J].计算机工程, 2021, 47(8):271-276, 283. ZHU H Q, LI H, LI D W.Generative adversarial network model based on single image learning[J].Computer Engineering, 2021, 47(8):271-276, 283.(in Chinese) [2] MEN Y F, MAO Y M, JIANG Y N, et al.Controllable person image synthesis with attribute-decomposed GAN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:5083-5092. [3] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial networks[EB/OL].[2021-10-05].https://arxiv.org/abs/1406.2661. [4] MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL].[2021-10-05].https://www.semanticscholar.org/reader/353ecf7b66b3e9ff5e9f41145a147e899a2eea5c. [5] LIU L L, ZHANG H J, XU X F, et al.Collocating clothes with generative adversarial networks cosupervised by categories and attributes:a multidiscriminator framework[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9):3540-3554. [6] ISOLA P, ZHU J Y, ZHOU T H, et al.Image-to-image translation with conditional adversarial networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5967-5976. [7] RONNEBERGER O, FISCHER P, BROX T.U-net:convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany:Springer, 2015:234-241. [8] WANG T C, LIU M Y, ZHU J Y, et al.High-resolution image synthesis and semantic manipulation with conditional GANs[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8798-8807. [9] ZHU J Y, PARK T, ISOLA P, et al.Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2242-2251. [10] WEI Y Y, ZHANG Z, WANG Y, et al.DerainCycleGAN:rain attentive CycleGAN for single image deraining and rainmaking[J].IEEE Transactions on Image Processing, 2021, 30:4788-4801. [11] GAO R, HOU X S, QIN J, et al.Zero-VAE-GAN:generating unseen features for generalized and transductive zero-shot learning[J].IEEE Transactions on Image Processing, 2020, 29:3665-3680. [12] CHAN C, GINOSAR S, ZHOU T H, et al.Everybody dance now[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:5932-5941. [13] WANG T C, LIU M Y, TAO A, et al.Few-shot video-to-video synthesis[EB/OL].[2021-10-05].https://arxiv.org/pdf/1910.12713.pdf. [14] MA L Q, JIA X, SUN Q R, et al.Pose guided person image generation[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.Washington D.C., USA:IEEE Press, 2017:405-415. [15] KARRAS T, LAINE S, AILA T M.A style-based generator architecture for generative adversarial networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:4396-4405. [16] HUANG X, BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:1510-1519. [17] ZHU Z, HUANG T T, SHI B G, et al.Progressive pose attention transfer for person image generation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:2342-2351. [18] ZHANG J S, LI K, LAI Y K, et al.PISE:person image synthesis and editing with decoupled GAN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:7978-7986. [19] LIANG X D, GONG K, SHEN X H, et al.Look into person:joint body parsing & pose estimation network and a new benchmark[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4):871-885. [20] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft COCO:common objects in context[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:740-755. [21] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2021-10-05].https://arxiv.org/pdf/1409.1556.pdf. [22] LU Y, TAI Y W, TANG C K.Attribute-guided face generation using conditional CycleGAN[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:282-297. [23] CAO Z, HIDALGO G, SIMON T, et al.OpenPose:realtime multi-person 2D pose estimation using part affinity fields[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1):172-186. [24] LEDIG C, THEIS L, HUSZÁR F, et al.Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:105-114. [25] JOHNSON J, ALAHI A, FEI-FEI L.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:694-711. [26] SIAROHIN A, SANGINETO E, LATHUILIÈRE S, et al.Deformable GANs for pose-based human image generation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3408-3416. [27] LIU Z W, LUO P, QIU S, et al.DeepFashion:powering robust clothes recognition and retrieval with rich annotations[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1096-1104. |