1 |
ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2242-2251.
|
2 |
CHOI Y, CHOI M, KIM M, et al. StarGAN: unified generative adversarial networks for multi-domain image-to-image translation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 8789-8797.
|
3 |
MCCLOSKEY S, CHEN C, YU J Y. Focus manipulation detection via photometric histogram analysis[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1674-1682.
|
4 |
耿鹏志, 樊红兴, 张翌阳, 等. 基于篡改伪影的深度伪造检测方法. 计算机工程, 2021, 47 (12): 156- 162.
|
|
GENG P Z, FAN H X, ZHANG Y Y, et al. Deepfake detection method based on tampering artifacts. Computer Engineering, 2021, 47 (12): 156- 162.
|
5 |
YANG X, LI Y Z, LYU S W. Exposing deep fakes using inconsistent head poses[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Washington D. C., USA: IEEE Press, 2019: 8261-8265.
|
6 |
LI Y, LYU S. Exposing deepfake videos by detecting face warping artifacts[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 46-52.
|
7 |
YU N, SKRIPNIUK V, ABDELNABI S, et al. Artificial fingerprinting for generative models: rooting deepfake attribution in training data[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 14428-14437.
|
8 |
NEEKHARA P, HUSSAIN H, ZHANG X Q, et al. FaceSigns: semi-fragile neural watermarks for media authentication and countering deepfakes[EB/OL]. [2023-06-10]. https://arxiv.org/pdf/2204.01960v1.
|
9 |
RUIZ N, BARGAL S A, SCLAROFF S. Disrupting deepfakes: adversarial attacks against conditional image translation networks and facial manipulation systems[M]. Berlin, Germany: Springer, 2020.
|
10 |
DONG J H, XIE X H. Visually maintained image disturbance against deepfake face swapping[C]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C., USA: IEEE Press, 2021: 1-6.
|
11 |
QIU H X, DU Y H, LU T L. The framework of cross-domain and model adversarial attack against deepfake. Future Internet, 2022, 14 (2): 46.
doi: 10.3390/fi14020046
|
12 |
HUANG H, WANG Y T, CHEN Z Y, et al. CMUA-watermark: a cross-model universal adversarial watermark for combating deepfakes. Artificial Intelligence, 2022, 36 (1): 989- 997.
|
13 |
KORSHUNOVA I, SHI W Z, DAMBRE J, et al. Fast face-swap using convolutional neural networks[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 3677-3685.
|
14 |
NIRKIN Y, KELLER Y, HASSNER T. FSGAN: subject agnostic face swapping and reenactment[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 7184-7193.
|
15 |
HUANG R, ZHANG S, LI T Y, et al. Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2439-2448.
|
16 |
ZHU Y H, LI Q, WANG J, et al. One shot face swapping on megapixels[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4832-4842.
|
17 |
GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[C]//Proceedings of the 3rd IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2015: 2931-2944.
|
18 |
MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning models resistant to adversarial attacks[C]// Proceedings of IEEE International Conference on Learning Representations. Washington D. C., USA: IEEE Press, 2018: 316-327.
|
19 |
DONG Y P, LIAO F Z, PANG T Y, et al. Boosting adversarial attacks with momentum[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 185-9193.
|
20 |
陈晓楠, 胡建敏, 张本俊, 等. 基于模型间迁移性的黑盒对抗攻击起点提升方法. 计算机工程, 2021, 47 (8): 162- 169.
|
|
CHEN X N, HU J M, ZHANG B J, et al. Black box adversarial attack starting point promotion method based on mobility between models. Computer Engineering, 2021, 47 (8): 162- 169.
|
21 |
|
22 |
BALUJA S, FISCHER I. Learning to attack: adversarial transformation networks. Artificial Intelligence, 2018, 32 (1): 3719- 3721.
|
23 |
BOSE A J, AARABI P. Adversarial attacks on face detectors using neural net based constrained optimization[C]//Proceedings of the 20th IEEE International Workshop on Multimedia Signal Processing. Washington D. C., USA: IEEE Press, 2018: 1-6.
|
24 |
XIAO C W, LI B, ZHU J Y, et al. Generating adversarial examples with adversarial networks[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Washington D. C., USA: IEEE Press, 2018: 1207-1219.
|
25 |
JANDIAL S, MANGLA P, VARSHNEY S, et al. AdvGAN++: harnessing latent layers for adversary generation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 2045-2048.
|
26 |
WANG X, HE K, HOPCROFT J E. AT-GAN: a generative attack model for adversarial transferring on generative adversarial nets[EB/OL]. [2023-06-10]. https://arxiv.org/pdf/1904.07793v1.
|
27 |
|
28 |
LIN Z L, SHI Y, XUE Z. IDSGAN: generative adversarial networks for attack generation against intrusion detection[M]. Berlin, Germany: Springer, 2022.
|
29 |
TANG H, XU D, SEBE N, et al. Attention-guided generative adversarial networks for unsupervised image-to-image translation[C]//Proceedings of IEEE International Joint Conference on Neural Networks. Washington D. C., USA: IEEE Press, 2019: 1-8.
|
30 |
LI X Y, ZHANG S C, HU J, et al. Image-to-image translation via hierarchical style disentanglement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 8639-8648.
|
31 |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826.
|
32 |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial examples in the physical world[M]. [S. 1. ]: Chapman and Hall/CRC, 2018.
|
33 |
XIE C H, ZHANG Z S, ZHOU Y Y, et al. Improving transferability of adversarial examples with input diversity[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 2730-2739.
|
34 |
CROCE F, HEIN M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[C]//Proceedings of the 37th International Conference on Machine Learning. Washington D. C., USA: IEEE Press, 2022: 2206-2216.
|
35 |
WANG X Y, HUANG J J, MA S Q, et al. DeepFake disrupter: the detector of Deepfake is my friend[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 14900-14909.
|