[1] DALAL N, TRIGGS B.Histograms of oriented gradients for human detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2005:886-893. [2] LEE T S.Image representation using 2D Gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(10):959-971. [3] VIOLA P, JONES M.Rapid object detection using a boosted cascade of simple features[C]//Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2001:54-62. [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6):84-90. [5] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [6] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [7] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [8] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [9] LIU W, ANGUELOV D, ERHAN D, et al.SSD single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:121-129. [10] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [11] LIN T Y, GOYAL P, GIRSHICK R, et al.Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2999-3007. [12] ZHU Z, LIANG D, ZHANG S H, et al.Traffic-sign detection and classification in the wild[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2110-2118. [13] 郭璠, 张泳祥, 唐琎, 等.YOLOv3-A:基于注意力机制的交通标志检测网络[J].通信学报, 2021, 42(1):87-99. GUO F, ZHANG Y X, TANG J, et al.YOLOv3-A:a traffic sign detection network based on attention mechanism[J].Journal on Communications, 2021, 42(1):87-99.(in Chinese) [14] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-08-01].https://arxiv.org/abs/2004.10934. [15] WANG C Y, MARK LIAO H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:1571-1580. [16] HOWARD A, SANDLER M, CHEN B, et al.Searching for MobileNetv3[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1314-1324. [17] HU J, SHEN L, ALBANIE S, et al.Squeeze-and-excitation networks[C]//Proceedings of IEEE Transactions on Pattern Analysis and Machine Intelligence.Washington D.C., USA:IEEE Press, 2018:2011-2023. [18] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [19] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-08-01].https://arxiv.org/abs/1804.02767. [20] WANG W H, XIE E Z, SONG X G, et al.Efficient and accurate arbitrary-shaped text detection with pixel aggregation network[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:8439-8448. [21] MISRA D.Mish:a self regularized non-monotonic neural activation function[EB/OL].[2021-08-01].https://arxiv.org/abs/1908.08681. [22] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-08-01].https://arxiv.org/abs/1704.04861. [23] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:3431-3440. [24] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [25] LIN T Y, MAIRE M, BELONGIE S, et al.Microsoft COCO:common objects in context[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2014:740-755. [26] JIANG Z C, ZHAO L Q, LI S Y, et al.Real-time object detection method based on improved YOLOv4-tiny[EB/OL].[2021-08-01].https://arxiv.org/abs/2011.04244. [27] LI Y T, HUANG H S, XIE Q S, et al.Research on a surface defect detection algorithm based on MobileNet-SSD[J].Applied Sciences, 2018, 8(9):1678-1683. [28] WANG F, JIANG M Q, QIAN C, et al.Residual attention network for image classification[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6450-6458. [29] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:833-851. [30] 周勇, 陈思霖, 赵佳琦, 等.基于弱语义注意力的遥感图像可解释目标检测[J].电子学报, 2021, 49(4):679-689. ZHOU Y, CHEN S L, ZHAO J Q, et al.Weakly semantic based attention network for interpretable object detection in remote sensing imagery[J].Acta Electronica Sinica, 2021, 49(4):679-689.(in Chinese) [31] VAN ETTEN A.You only look twice:rapid multi-scale object detection in satellite imagery[EB/OL].[2021-08-01].https://arxiv.org/abs/1805.09512. [32] CAI Z W, VASCONCELOS N.Cascade R-CNN:delving into high quality object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:6154-6162. [33] ZHANG S F, CHI C, YAO Y Q, et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:9756-9765. [34] KIM K, LEE H S.Probabilistic anchor assignment with IoU prediction for object detection[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:355-371. [35] GE Z, LIU S T, WANG F, et al.YOLOX:exceeding YOLO series in 2021[EB/OL].[2021-08-01].https://arxiv.org/abs/2107.08430. |