[1] ZHOU M, JIN J R, ZHANG W N, et al.Multi-agent reinforcement learning for order-dispatching via order-vehicle distribution matching[C]//Proceedings of the 28th International Conference on Information and Knowledge Management.New York, USA:ACM Press, 2019:2645-2653. [2] VERMA T, VARAKANTHAM P, KRAUS S, et al.Augmentin-g decisions of taxi drivers through reinforcem-ent learning for improving revenues[EB/OL].[2021-10-28].https://www.researchgate.net/profile/Tanvi-Verma-3/publication/324963776_Augmenting_Decisions_of_Taxi_Drivers_through_Reinforcement_Learning_for_Improving_Revenues/links/5aed037b458515f59982eccf/Augmenting-Decisions-of-Taxi-Drivers-through-Reinforcement-Learning-for-Improving-Revenues.pdf. [3] JIAO Y, TANG X C, QIN Z W, et al.Real-world ride-hailing vehicle repositioning using deep reinforcement learning[J].Transportation Research Part C:Emerging Technologies, 2021, 130:103289. [4] WALDY J, HOONG C L.Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers[C]//Proceedings of International Conference on Automated Planning and Scheduling.[S.l.]:AAAI Press, 2020:394-402. [5] ZHENG H Y, WU J.Online to offline business:urban taxi dispatching with passenger-driver matching stability[C]//Proceedings of the 37th International Conference on Distributed Computing Systems.Washington D.C., USA:IEEE Press, 2017:816-825. [6] ZHANG R, PAVONE M.Control of robotic mobility-on-demand systems:a queueing-theoretical perspective[J].International Journal of Robotics Research, 2014, 35(1/2/3):186-203. [7] MA Y N, LI J W, CAO Z G, et al.Learning to iteratively solve routing problems with dual-aspect collaborative Transformer[EB/OL].[2021-10-28].https://arxiv.org/abs/2110.02544. [8] WU Y X, SONG W, CAO Z G, et al.Learning improvement heuristics for solving routing problems[J].IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9):5057-5069. [9] ZHANG L Y, HU T, MIN Y, et al.A taxi order dispatch model based on combinatorial optimization[C]//Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining.New York, USA:ACM Press, 2017:2151-2159. [10] WEI Z Q, CHENG X T, YAO J, et al.Ride-hailing order dispatching at DiDi via reinforcement learning[J].INFORMS Journal on Applied Analytics, 2020, 50(5):272-286. [11] LI J W, XIN L, CAO Z G, et al.Heterogeneous attentions for solving pickup and delivery problem via deep reinforcement learning[J].IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3):2306-2315. [12] SUTTON R S, BARTO A G.Reinforcement learning:an introduction[M].Cambridge, USA:MIT Press, 2018. [13] XU Z, LI Z X, GUAN Q W, et al.Large-scale order dispatch in on-demand ride-hailing platforms:a learning and planning approach[C]//Proceedings of the 24th International Conference on Knowledge Discovery & Data Mining.New York, USA:ACM Press, 2018:905-913. [14] LI J W, MA Y N, GAO R Z, et al.Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem[J].IEEE Transactions on Cybernetics, 2021, 99:1-10. [15] 邱月, 郑柏通, 蔡超.多约束复杂环境下UAV航迹规划策略自学习方法[J].计算机工程, 2021, 47(5):44-51. QIU Y, ZHENG B T, CAI C.Self-learning method of UAV track planning strategy in complex environment with multiple constraints[J].Computer Engineering, 2021, 47(5):44-51.(in Chinese) [16] WANG Z D, QIN Z W, TANG X C, et al.Deep reinforcement learning with knowledge transfer for online rides order dispatching[C]//Proceedings of International Conference on Data Mining.Washington D.C., USA:IEEE Press, 2018:617-626. [17] YANG Y D, LUO R, LIN M N, et al.Mean field multi-agent reinforcement learning[EB/OL].[2021-10-28].https://arxiv.org/pdf/1802.05438.pdf. [18] AL-ABBASI A O, GHOSH A, AGGARWAL V.DeepPool:distributed model-free algorithm for ride-sharing using deep reinforcement learning[J].IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12):4714-4727. [19] JIAO Y, TANG X C, QIN Z W, et al.Real-world ride-hailing vehicle repositioning using deep reinforcement learning[J].Transportation Research Part C:Emerging Technologies, 2021, 130:103289. [20] SON K, KIM D, KANG W J, et al.Qtran:learning to factorize with transformation for coop-erative multi agent reinforcement learning[EB/OL].[2021-10-28].https://arxiv.org/abs/1905.05408. [21] ZHANG W Q, WANG Q, LI J J, et al.Dynamic fleet management with rewriting deep reinforcement learning[J].IEEE Access, 2020, 8:143333-143341. [22] 雷捷维, 王嘉旸, 任航, 等.基于Expectimax搜索与Double DQN的非完备信息博弈算法[J].计算机工程, 2021, 47(3):304-310, 320. LEI J W, WANG J Y, REN H, et al.Incomplete information game algorithm based on Expectimax search and Double DQN[J].Computer Engineering, 2021, 47(3):304-310, 320.(in Chinese) [23] MACIEJEWSKI M, NAGEL K.The influence of multi-agent cooperation on the efficiency of taxi dispatching[C]//Proceedings of International Conference on Parallel Processing and Applied Mathematics.Berlin, Germany:Springer, 2014:751-760. [24] WEI C, WANG Y H, YAN X D, et al.Look-ahead insertion policy for a shared-taxi system based on reinforcement learning[J].IEEE Access, 2017, 6:5716-5726. [25] JIN J, ZHOU M, ZHANG W, et al.Coride:joint order dispatching and fleet management for multi-scale ride-hailing platforms[C]//Proceedings of the 28th International Conference on Information and Knowledge Management. New York, USA:ACM Press, 2019:1983-1992. [26] LIMA O D, SHAH H, CHU T S, et al.Efficient ridesharing dispatch using multi agent reinforcement learning[EB/OL].[2021-10-28].https://arxiv.org/abs/2006.10897. [27] LI M N, QIN Z W, JIAO Y, et al.Efficient ridesharing order dispatching with mean field multi-agent reinforcement learning[C]//Proceedings of Efficient Ridesharing Order Dispatching with Mean Field Multi-Agent Reinforcement Learning.New York, USA:ACM Press, 2019:983-994. [28] RASHID T, SAMVELYAN M, SCHROEDER C, et al.QMIX:monotonic value function factorization for deep multi agent reinforcement learning[EB/OL].[2021-10-28].https://arxiv.org/pdf/1803.11485.pdf. |