[1] KHAN M A, SALAH K.IoT security:review, blockchain solutions, and open challenges[J].Future Generation Computer Systems, 2018, 82:395-411. [2] MISHRA N, PANDYA S.Internet of Things applications, security challenges, attacks, intrusion detection, and future visions:a systematic review[J].IEEE Access, 2021, 9:59353-59377. [3] FAROOQ M U, WASEEM M, KHAIRI A, et al.A critical analysis on the security concerns of Internet of Things(IoT)[J].International Journal of Computer Applications, 2015, 111(7):1-6. [4] BACCARINI L M R, ROCHA E SILVA V V, DE MENEZES B R, et al.SVM practical industrial application for mechanical faults diagnostic[J].Expert Systems with Applications, 2011, 38(6):6980-6984. [5] ZHANG Y, LI P S, WANG X H.Intrusion detection for IoT based on improved genetic algorithm and deep belief network[J].IEEE Access, 2019, 7:31711-31722. [6] RAZAVI-FAR R, DAVILU H, PALADE V, et al.Model-based fault detection and isolation of a steam generator using neuro-fuzzy networks[J].Neurocomputing, 2009, 72(13/14/15):2939-2951. [7] FARID D M, RAHMAN C M.Novel class detection in concept-drifting data stream mining employing decision tree[C]//Proceedings of the 7th International Conference on Electrical and Computer Engineering.Washington D.C., USA:IEEE Press, 2012:630-633. [8] DING X J, GUO J X, LI D Y, et al.Pricing and budget allocation for IoT blockchain with edge computing[EB/OL].[2022-01-05].https://arxiv.org/pdf/2008.09724v1.pdf. [9] CONSTANTINIDES C, SHIAELES S, GHITA B, et al.A novel online incremental learning intrusion prevention system[C]//Proceedings of the 10th IFIP International Conference on New Technologies, Mobility and Security.Washington D.C., USA:IEEE Press, 2019:1-6. [10] SU M Y, YU G J, LIN C Y.A real-time network intrusion detection system for large-scale attacks based on an incremental mining approach[J].Computers & Security, 2009, 28(5):301-309. [11] CHEN M H, CHANG P C, WU J L.A population-based incremental learning approach with artificial immune system for network intrusion detection[J].Engineering Applications of Artificial Intelligence, 2016, 51:171-181. [12] TAHERI S, BAGIROV A M, GONDAL I, et al.Cyberattack triage using incremental clustering for intrusion detection systems[J].International Journal of Information Security, 2020, 19(5):597-607. [13] WANG T T, LÜ Q J, HU B, et al.A few-shot class-incremental learning approach for intrusion detection[C]//Proceedings of International Conference on Computer Communications and Networks.Washington D.C., USA:IEEE Press, 2021:1-8. [14] CARPENTER G A, GROSSBERG S.The ART of adaptive pattern recognition by a self-organizing neural network[J].Computer, 1988, 21(3):77-88. [15] WU G L, GONG S G, QUEEN P L.Striking a balance between stability and plasticity for class-incremental learning[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:1104-1113. [16] MASANA M, LIU X, TWARDOWSKI B, et al.Class-incremental learning:survey and performance evaluation on image classification[EB/OL].[2022-01-05].https://arxiv.org/pdf/2010.15277v2.pdf. [17] LI Z Z, HOIEM D.Learning without forgetting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12):2935-2947. [18] KIRKPATRICK J, PASCANU R, RABINOWITZ N, et al.Overcoming catastrophic forgetting in neural networks[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(13):3521-3526. [19] REBUFFI S A, KOLESNIKOV A, SPERL G, et al.iCaRL:incremental classifier and representation learning[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:5533-5542. [20] TAO X Y, HONG X P, CHANG X Y, et al.Few-shot class-incremental learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12180-12189. [21] TAO X Y, CHANG X Y, HONG X P, et al.Topology-preserving class-incremental learning[EB/OL].[2022-01-05].https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123640256.pdf. [22] SHEN F R, OGURA T, HASEGAWA O.An enhanced self-organizing incremental neural network for online unsupervised learning[J].Neural Networks, 2007, 20(8):893-903. [23] SHEN F R, HASEGAWA O.An incremental network for on-line unsupervised classification and topology learning[J].Neural Networks, 2006, 19(1):90-106. [24] ZHU M Y, CHEN Z, CHEN K F, et al.Attention-based federated incremental learning for traffic classification in the Internet of Things[J].Computer Communications, 2022, 185:168-175. [25] 张帅帅, 黄杰, 祁春阳, 等.基于SOINN的在线物联网设备识别方法[J].东南大学学报(自然科学版), 2021, 51(4):715-723. ZHANG S S, HUANG J, QI C Y, et al.Online IoT device identification method based on SOINN[J].Journal of Southeast University(Natural Science Edition), 2021, 51(4):715-723.(in Chinese) [26] 张斌, 李立勋, 董书琴.基于改进SOINN算法的恶意软件增量检测方法[J].网络与信息安全学报, 2019, 5(6):21-30. ZHANG B, LI L X, DONG S Q.Malware detection approach based on improved SOINN[J].Chinese Journal of Network and Information Security, 2019, 5(6):21-30.(in Chinese) |