[1] ZHAO Qiangli,JIANG Yanhuang,XU Ming.Incremental learning by heterogeneous Bagging ensemble[C]//Proceedings of the 6th International Conference Advanced Data Mining and Applications.Berlin,Germany:Springer,2010:1-12. [2] LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423. [3] BIFET A,HOLMES G,PFAHRINGER B.Leveraging Bagging for evolving data streams[C]//Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases.Berlin,Germany:Springer,2010:135-150. [4] REN Siqi,LIAO Bo,ZHU Wen,et al.Knowledge-maximized ensemble algorithm for different types of concept drift[J].Information Sciences,2018,430:261-281. [5] BRZEZINSKI D,STEFANOWSKI J.Accuracy updated ensemble for data streams with concept drift[C]//Proceedings of the 6th International Conference on Hybrid Artificial Intelligent Systems.Berlin,Germany:Springer,2011:155-163. [6] TEGJYOT S S,MEHMED K.Handling adversarial concept drift in streaming data[J].Expert Systems with Applications,2018,97:18-40. [7] FRIEDMAN J,HASTIE T,TIBSHIRANI R.Additive logistic regression:a statistical view of Boosting(with discussion and a rejoinder by the authors)[J].The Annals of Statistics,2000,28(2):337-407. [8] BRZEZINSKI D,STEFANOWSKI J.Combining block-based and online methods in learning ensembles from concept drifting data streams[J].Information Sciences,2014,265:50-67. [9] GU Xiaofeng,XU Jiawen,HUANG Shijing,et al.An improving online accuracy updated ensemble method in learning from evolving data streams[C]//Proceedings of International Computer Conference on Wavelet Active Media Technology and Information Processing.Washington D.C.,USA:IEEE Press,2015:1-8. [10] YIN Xucheng,HUANG Kaizhu,HAO Hongwei.DE2:dynamic ensemble of ensembles for learning nonstationary data[J].Neurocomputing,2015,165:14-22. [11] JOAO R B J,NICOLETTI M D C.An iterative boosting-based ensemble for streaming data classification[J].Information Fusion,2018,45:66-78. [12] WANG Biao,MAO Zhizhong.Outlier detection based on a dynamic ensemble model:applied to process monitoring[J].Information Fusion,2019,51:244-258. [13] STREET W N,KIM Y.A Streaming Ensemble Algorithm(SEA) for large-scale classification[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2001:377-382. [14] WANG Haixun,FAN Wei.Mining concept-drifting data streams using ensemble classifiers[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2003:226-235. [15] MAHDI O A,PARDEDE E,CAO J L.Combination of information entropy and ensemble classification for detecting concept drift in data stream[C]//Proceedings of Australasian Computer Science Week Multiconference.Australia,Sydney:[s.n.],2018:1-7. [16] ABDUALRHMAN M,PADMA M C.Deterministic concept drift detection in ensemble classifier based data stream classification process[J].International Journal of Grid and High Performance Computing,2019,11(4):29-48. [17] SU Guanming,ZHANG Chengcui,WANG Haohong,et al.Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning[EB/OL].[2019-07-08].https://www.researchgate.net/publication/328045547_Selection-based_resampling_ensemble_algorithm_for_nonstationary_imbalanced_stream_data_learning. [18] ESCOVEDO T,KOSHIYAMA A,VELLASCO M,et al.DetectA:abrupt concept drift detection in non-stationary environments[J].Applied Soft Computing,2018,62:119-133. [19] GAMA J,MEDAS P,CASTILLO G,et al.Learning with drift detection[M].Berlin,Germany:Springer,2004. [20] BAENA-GARCIA M,CAMPO-AVILA J,FIDALGO R.Early drift detection method[C]//Proceedings of the 17th European Conference on Machine Learning.Berlin,Germany:Springer,2006:77-86. [21] BARROS R S M,CABRAL D R L,GONCALVES P M,et al.RDDM:reactive drift detection method[J].Expert Systems with Applications,2017,90:344-355. [22] ABBASZADEH O,AMIRI A,KHANTEYMOORI A R.An ensemble method for data stream classification in the presence of concept drift[J].Frontiers of Information Technology and Electronic Engineering,2015,16(12):1059-1068. [23] GONCALVES P M,BARROS R S M.RCD:a recurring concept drift framework[J].Pattern Recognition Letters,2013,34(9):1018-1025. [24] ZHANG Hang,LIU Weike,SHAN Jicheng,et al.Online active learning paired ensemble for concept drift and class imbalance[EB/OL].[2019-07-08].https://www.researchgate.net/publication/329159411_Online_Active_Learning_Paired_Ensemble_for_Concept_Drift_and_Class_Imbalance. [25] SANTOS S G T C,GONCALVES P M,SILVA G D S,et al.Speeding up recovery from concept drifts[C]//Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.Washington D.C.,USA:IEEE Press,2014:179-194. [26] BARROS R S M,SANTOS S G T C,GONCALVES P M.A Boosting-like online learning ensemble[C]//Proceedings of 2016 IEEE International Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2016:1871-1878. [27] BABU D K,RAMADEVI Y,RAMANA K V.RGNBC:Rough Gaussian naive Bayes classifier for data stream classification with recurring concept drift[J].Arabian Journal for Science and Engineering,2017,42(2):705-714. [28] LI Hongtao.Research on dynamic learning for data stream Bayesian classification[D].Beijing:Beijing Jiaotong University,2018.(in Chinese) 李宏韬.面向数据流贝叶斯分类的动态学习策略研究[D].北京:北京交通大学,2018. [29] MIRZA B,LIN Z,LIU N.Ensemble of subset online sequintal extreme learning machine for class imbalance and concept drift[J].Neurocomputing,2015,149:316-329. [30] LI Peipei,WU Xindong,LIANG Qianhui,et al.Learning concept-drifting data streams with random ensemble decision trees[J].Neurocomputing,2015,166:68-83. [31] HAN Jie,NI Zhiwei,JU Dongdong,et al.A classification algorithm for mining data streams based on naive Bayes and unsupervised learning[C]//Proceedings of the 12th China Management Annual Conference.Tianjin:[s.n.],2017:1-5.(in Chinese) 韩杰,倪志伟,巨东东,等.基于朴素贝叶斯和无监督学习的数据流分类算法[C]//第十二届中国管理学年会论文集.天津:[出版者不详],2017:1-5. [32] KRAWCZYK B,CANO A.Online ensemble learning with abstaining classifiers for drifting and noisy data streams[J].Applied Soft Computing,2018,68:677-692. [33] CHU Guang,HU Xuegang,ZHANG Yuhong.Semantic-based concept drift detection algorithm for text data stream[J].Computer Engineering,2018,44(2):24-30.(in Chinese) 储光,胡学钢,张玉红.基于语义的文本数据流概念漂移检测算法[J].计算机工程,2018,44(2):24-30. [34] MINKU L L,YAO X.DDD:a new ensemble approach for dealing with concept drift[J].IEEE Transactions on Knowledge and Data Engineering,2012,24(4):619-633. [35] COLLELL G,PRELEC D,PATIL K R.A simple plug-in Bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data[J].Neurocomputing,2018,275:330-340. [36] GU Hui,XU Lu,TU Mengying,et al.Bagging classification tree-based robust variable selection for radial basis function network modeling in metabonomics data analysis[J].Chemometrics and Intelligent Laboratory Systems,2018,174:76-84. [37] CHENG Jin,WANG Jian.An association-based evolutionary ensemble method of variable selection[J].Expert Systems with Applications,2019,124(15):143-155. [38] RAGHUWANSHI B S,SHUKLA S.Under Bagging based reduced kernelized weighted extreme learning machine for class imbalance learning[J].Engineering Applications of Artificial Intelligence,2018,74:252-270. [39] RAGHUWANSHI B S,SHUKLA S.Class imbalance learning using under Bagging based kernelized extreme learning machine[J].Neurocomputing,2019,329:172-187. [40] SUN J,LANG J,FUJITA H,et al.Imbalanced enterprise credit evaluation with DTE-SBD:decision tree ensemble based on SMOTE and Bagging with differentiated sampling rates[J].Information Sciences,2018,425:76-91. [41] LEE S J,XU Z,LI T,et al.A novel Bagging C4.5 algorithm based on wrapper feature selection for supporting wise clinical decision making[J].Journal of Biomedical Informatics,2018,78:144-155. [42] BEYGELZIMER A,KALE S,LUO H.Optimal and adaptive algorithms for online Boosting[C]//Proceedings of the 32nd International Conference on Machine Learning.Lille,France:[s.n.],2015:2313-2321. [43] YU Z,WANG D,YOU J,et al.Progressive subspace ensemble learning[J].Pattern Recognition,2016,60:692-705. [44] KIDERA T,OZAWA S,ABE S.An incremental learning algorithm of ensemble classifier systems[C]//Proceedings of International Joint Conference on Neural Networks.Washington D.C.,USA:IEEE Press,2006:3421-3427. [45] SABZEVARI M,SUAREZ A.Vote-boosting ensembles[J].Pattern Recognition,2018,83:119-133. [46] MA Xianzhe.Study on data streams classification algorithms based on ensemble classifier[D].Changchun:Northeastern University,2012.(in Chinese)马宪哲.基于集成分类器的数据流分类算法研究[D].长春:东北大学,2012. [47] BARTOSZ K.One-class classifier ensemble pruning and weighting with firefly algorithm[J].Neurocomputing,2015,150:490-500. [48] KONRAD J.New diversity measure for data stream classification ensembles[J].Engineering Applications of Artificial Intelligence,2018,74:23-34. [49] WANG Junhong,XU Shuliang,DUAN Bingqian.An ensemble classification algorithm based on information entropy for data streams[J].Neural Processing Letters,2019,3:1-17. [50] JABER G,CORNUEJOLS A,TARROUX P.A new on-line learning method for coping with recurring concepts:the ADACC system[C]//Proceedings of International Conference on Neural Information Processing.Berlin,Germany:Springer,2013:595-604. [51] HU Xugang,WANG Haiyan,LI Peipei.Online Biterm topic model based short text stream classification using short text expansion and concept drifting detection[J].Pattern Recognition Letters,2018,116:187-194. [52] REN Siqi,LIAO Bo,ZHU Wen,et al.The gradual resampling ensemble for mining imbalanced data streams with concept drift[J].Neurocomputing,2018,286:150-166. [53] HUANG Shan,WANG Botao,QIU Junhao,et al.Parallel ensemble of online sequential extreme learning machine based on MapReduce[J].Neurocomputing,2016,74:352-367. [54] XU Shuliang,WANG Junhong.A fast incremental extreme learning machine algorithm for data streams classification[J].Expert Systems with Applications,2016,65:332-344. [55] JIA Tao,HAN Meng,WANG Shaofeng,et al.Survey of decision tree classification methods over data streams[J].Journal of Nanjing Normal University(Natural Science Edition),2019,42(3):1-13.(in Chinese)贾涛,韩萌,王少峰,等.数据流决策树分类方法综述[J].南京师大学报(自然科学报),2019,42(3):1-13. [56] LI Yanxia,CHAI Yi,HU Youqiang,et al.Review of imbalanced data classification methods[J].Control and Decision,2019,34(4):7-12.(in Chinese)李艳霞,柴毅,胡友强,等.不平衡数据分类方法综述[J].控制与决策,2019,34(4):7-12. [57] WEN Xueyan,CHEN Jianan,JING weipeng,et al.Research on optimization of classification model for imbalanced data set[J].Computer Engineering,2018,44(4):268-273.(in Chinese)温雪岩,陈家男,景维鹏,等.面向不平衡数据集分类模型的优化研究[J].计算机工程,2018,44(4):268-273. |