[1] GLASER JACOB R, GLASER EDMUND M.Neuron imaging with neurolucida-a PC-based system for image combining microscopy[J].Computerized Medical Imaging and Graphics, 1990, 14(5):307-317. [2] EBERHARD J P, WANNER A, WITTUM G.NeuGen:a tool for the generation of realistic morphology of cortical neurons and neural networks in 3D[J].Neurocomputing, 2006, 70(1/2/3):327-342. [3] WILSON M A, BHALLA U S, UHLEY J D, et al.GENESIS:a system for simulating neural networks[M]//TOURETZKY D S.Advances in neural information processing systems.New York, USA:ACM Press, 1989:485-492. [4] AGUIAR P, SOUSA M, SZUCS P.Versatile morphometric analysis and visualization of the three-dimensional structure of neurons[J].Neuroinformatics, 2013, 11(4):393-403. [5] LASSERRE S, HERNANDO J, HILL S, et al.A neuron membrane mesh representation for visualization of electrophysiological simulations[J].IEEE Transactions on Visualization and Computer Graphics, 2012, 18(2):214-227. [6] BRITO J P, MATA S, BAYONA S, et al.Neuronize:a tool for building realistic neuronal cell morphologies[J].Frontiers in Neuroanatomy, 2013, 7:15. [7] GARCIA-CANTERO J J, BRITO J P, MATA S, et al.NeuroTessMesh:a tool for the generation and visualization of neuron meshes and adaptive on-the-fly refinement[J].Frontiers in Neuroinformatics, 2017, 11:38. [8] ABDELLAH M, HERNANDO J, ANTILLE N, et al.Reconstruction and visualization of large-scale volumetric models of neocortical circuits for physically-plausible in silico optical studies[J].BMC Bioinformatics, 2017, 18(10):39-50. [9] MCDOUGAL R A, HINES M L, LYTTON W W.Water-tight membranes from neuronal morphology files[J].Journal of Neuroscience Methods, 2013, 220(2):167-178. [10] MÖRSCHEL K, BREIT M, QUEISSER G.Generating neuron geometries for detailed three-dimensional simulations using anamorph[J].Neuroinformatics, 2017, 15(3):247-269. [11] KOENE R A, TIJMS B, HEES P, et al.NETMORPH:a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies[J].Neuroinformatics, 2009, 7(3):195-210. [12] ABDELLAH M, FAVREAU C, HERNANDO J, et al.Generating high fidelity surface meshes of neocortical neurons using skin modifiers[C]//Proceedings of Computer Graphics & Visual Computing.Bangor, UK:[s.n.], 2019:1-10. [13] KARLSSON J, ABDELLAH M, SPEIERER S, et al.High fidelity visualization of large scale digitally reconstructed brain circuitry with signed distance functions[C]//Proceedings of Visualization Conference.Washington D.C., USA:IEEE Press, 2019:176-180. [14] HART J C, SANDIN D J, KAUFFMAN L H.Ray tracing deterministic 3-D fractals[J].ACM SIGGRAPH Computer Graphics, 1989, 23(3):289-296. [15] BLOOMENTHAL J, SHOEMAKE K.Convolution surfaces[J].ACM SIGGRAPH Computer Graphics, 1991, 25(4):251-256. [16] MCCORMACK J, SHERSTYUK A.Creating and rendering convolution surfaces[J].Computer Graphics Forum, 1998, 17(2):113-120. [17] NISHIMURA H, HIRAI M, KAWAI T, et al.Object modeling by distribution function and a method of image generation[C]//Proceedings of Electronics Communications Conference.Washington D.C., USA:IEEE Press, 1985:718-725. [18] JIN X G, TAI C L, ZHANG H L.Implicit modeling from polygon soup using convolution[J].The Visual Computer, 2009, 25(3):279-288. [19] ZHU X Q, JIN X G, LIU S J, et al.Analytical solutions for sketch-based convolution surface modeling on the GPU[J].The Visual Computer, 2012, 28(11):1115-1125. [20] LORENSEN W E, CLINE H E.Marching cubes:a high resolution 3D surface construction algorithm[J].ACM SIGGRAPH Computer Graphics, 1987, 21(4):163-169. [21] MUSETH K.VDB:high-resolution sparse volumes with dynamic topology[J].ACM Transactions on Graphics, 2013, 32(3):1-22. [22] BOTSCH M, KOBBELT L.A remeshing approach to multiresolution modeling[C]//Proceedings of the Eurographics Symposium on Geometry Processing.New York, USA:ACM Press, 2004:185-192. [23] CIGNONI P, CORSINI M, RANZUGLIA G.MeshLab:an open-source 3D mesh processing system[J].Ercim News, 2008, 73(6):47-48. [24] LOOP C T.Smooth subdivision surfaces based on triangles[D].Salt Lake City, USA:The University of Utah, 1987:33-50. [25] SI H.TetGen, a delaunay-based quality tetrahedral mesh generator[J].ACM Transactions on Mathematical Software, 2015, 41(2):1-36. |