[1] DU J.An overview of multi-modal medical image fusion[J].Neurocomputing, 2016, 215:3-20. [2] LIU Y, CHEN X, CHENG J, et al.A medical image fusion method based on convolutional neural networks[C]//Proceedings of the 20th International Conference on Information Fusion.Washington D.C., USA:IEEE Press, 2017:1-7. [3] LI S T, KANG X D, FANG L Y, et al.Pixel-level image fusion:a survey of the state of the art[J].Information Fusion, 2017, 33:100-112. [4] 郭淑娟, 高媛, 秦品乐, 等.基于多尺度边缘保持分解与PCNN的医学图像融合[J].计算机工程, 2021, 47(3):276-283. GUO S J, GAO Y, QIN P L, et al.Medical image fusion based on multi-scale edge-preserving decomposition and PCNN[J].Computer Engineering, 2021, 47(3):276-283.(in Chinese) [5] LI H, WU X J.Multi-focus image fusion using dictionary learning and low-rank representation[C]//Proceedings of International Conference on Image and Graphics.Berlin, Germany:Springer, 2017:675-686. [6] ZHANG Y, ZHANG Y, LIU Y, et al.IFCNN:a general image fusion framework based on convolutional neural network[J].Information Fusion, 2020, 54:99-118. [7] XU H, MA J, JIANG J, et al.U2Fusion:a unified unsupervised image fusion network[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1):502-518. [8] LI H, WU X J.DenseFuse:a fusion approach to infrared and visible images[J].IEEE Transactions on Image Processing, 2019, 28(5):2614-2623. [9] MA B Y, ZHU Y, YIN X, et al.SESF-Fuse:an unsupervised deep model for multi-focus image fusion[J].Neural Computing and Applications, 2021, 33(11):5793-5804. [10] DUAN Z, ZHANG T P, TAN J, et al.Non-local multi-focus image fusion with recurrent neural networks[J].IEEE Access, 2020, 8:135284-135295. [11] VASWANI A, SHAZEER N, PARMAR N, et al.Attention is all you need[EB/OL].[2022-04-10].https://arxiv.org/abs/1706.03762. [12] TOUVRON H, CORD M, DOUZE M, et al.Training data-efficient image transformers & distillation through attention[EB/OL].[2022-04-10].https://arxiv.org/abs/2012.12877. [13] CARION N, MASSA F, SYNNAEVE G, et al.End-to-end object detection with transformers[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:213-229. [14] XU Y F, ZHANG Q M, ZHANG J, et al.ViTAE:vision transformer advanced by exploring intrinsic inductive bias[EB/OL].[2022-04-10].https://arxiv.org/abs/2106.03348. [15] FAN H Q, XIONG B, MANGALAM K, et al.Multiscale vision transformers[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:6804-6815. [16] 段丹丹, 唐加山, 温勇, 等.基于BERT模型的中文短文本分类算法[J].计算机工程, 2021, 47(1):79-86. DUAN D D, TANG J S, WEN Y, et al.Chinese short text classification algorithm based on BERT model[J].Computer Engineering, 2021, 47(1):79-86.(in Chinese) [17] 李俊, 吕学强.融合BERT语义加权与网络图的关键词抽取方法[J].计算机工程, 2020, 46(9):89-94. LI J, LÜ X Q.Keyword extraction method based on BERT semantic weighting and network graph[J].Computer Engineering, 2020, 46(9):89-94.(in Chinese) [18] BROWN T B, MANN B, RYDER N, et al.Language models are few-shot learners[EB/OL].[2022-04-10].https://arxiv.org/abs/2005.14165. [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:transformers for image recognition at scale[C]//Proceedings of International Conference on Learning Representations.New York, USA:ACM Press, 2021:1-10. [20] ZHU X Z, SU W J, LU L W, et al.Deformable DETR:deformable transformers for end-to-end object detection[EB/OL].[2022-04-10].https://arxiv.org/abs/2010.04159. [21] DAI Z G, CAI B L, LIN Y G, et al.UP-DETR:unsupervised pre-training for object detection with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:1601-1610. [22] SUN Z Q, CAO S C, YANG Y M, et al.Rethinking transformer-based set prediction for object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:3591-3600. [23] WANG Y Q, XU Z L, WANG X L, et al.End-to-end video instance segmentation with transformers[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:8737-8746. [24] ZHANG Y, LIU H, HU Q.TransFuse:fusing transformers and CNNs for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2021:14-24. [25] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al.Medical transformer:gated axial-attention for medical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention.Berlin, Germany:Springer, 2021:36-46. [26] JIANG Y, CHANG S, WANG Z.TransGAN:two pure transformers can make one strong GAN, and that can scale up[EB/OL].[2022-04-10].https://arxiv.org/abs/2102.07074. [27] CHANG H W, ZHANG H, JIANG L, et al.MaskGIT:masked generative image transformer[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2022:11305-11315. [28] PENG Z L, HUANG W, GU S Z, et al.Conformer:local features coupling global representations for visual recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:357-366. [29] CHEN C F R, FAN Q F, PANDA R.CrossViT:cross-attention multi-scale vision transformer for image classification[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:347-356. [30] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [31] WANG W H, XIE E Z, LI X, et al.Pyramid vision transformer:a versatile backbone for dense prediction without convolutions[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:548-558. [32] LIN J Y, MAO X F, CHEN Y F, et al.D^2ETR:decoder-only DETR with computationally efficient cross-scale attention[EB/OL].[2022-04-10].https://arxiv.org/abs/2203.00860. [33] KUMAR S B K.Image fusion based on pixel significance using cross bilateral filter[J].Signal, Image and Video Processing, 2015, 9(5):1193-1204. [34] YIN M, LIU X N, LIU Y, et al.Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain[J].IEEE Transactions on Instrumentation and Measurement, 2019, 68(1):49-64. [35] ZHANG X C, YE P, XIAO G.VIFB:a visible and infrared image fusion benchmark[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2020:468-478. |