[1] 胡建芳, 王熊辉, 郑伟诗, 等.RGB-D行为识别研究进展及展望[J].自动化学报, 2019, 45(5):829-840. HU J F, WANG X H, ZHENG W S, et al.RGB-D action recognition:recent advances and future perspectives[J].Acta Automatica Sinica, 2019, 45(5):829-840.(in Chinese) [2] 赫磊, 邵展鹏, 张剑华, 等.基于深度学习的行为识别算法综述[J].计算机科学, 2020, 47(S1):139-147. HE L, SHAO Z P, ZHANG J H, et al.Review of deep learning-based action recognition algorithms[J].Computer Science, 2020, 47(S1):139-147.(in Chinese) [3] 张聪聪, 何宁, 孙琪翔, 等.基于注意力机制的3D DenseNet人体动作识别方法[J].计算机工程, 2021, 47(11):313-320. ZHANG C C, HE N, SUN Q X, et al.Human motion recognition method based on attention mechanism of 3D DenseNet[J].Computer Engineering, 2021, 47(11):313-320.(in Chinese) [4] ZHANG Z M, MA X, SONG R, et al.Deep learning based human action recognition:a survey[C]//Proceedings of Chinese Automation Congress.Jinan, China:[s.n.], 2017:3780-3785. [5] YANG X D, TIAN Y L.EigenJoints-based action recognition using naïve-Bayes-nearest-neighbor[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2012:14-19. [6] LECUN Y, BOTTOU L, BENGIO Y, et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE, 1998, 86(11):2278-2324. [7] RUMELHART D E, HINTON G E, WILLIAMS R J.Learning representations by back-propagating errors[J].Nature, 1986, 323(6088):533-536. [8] KIPF T, FETAYA E, WANG K C, et al.Neural relational inference for interacting systems[EB/OL].[2021-02-05].https://arxiv.org/abs/1802.04687. [9] LIU H, TU J H, LIU M Y.Two-stream 3D convolutional neural network for skeleton-based action recognition[EB/OL].[2021-02-05].https://arxiv.org/abs/1705.08106. [10] DU Y, WANG W, WANG L.Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:1110-1118. [11] WANG X L, GIRSHICK R, GUPTA A, et al.Non-local neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:7794-7803. [12] HAN K, WANG Y H, TIAN Q, et al.GhostNet:more features from cheap operations[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1577-1586. [13] YAN S J, XIONG Y J, LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2021-02-05].https://arxiv.org/abs/1801.07455. [14] SHI L, ZHANG Y F, CHENG J, et al.Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:12018-12027. [15] LI M S, CHEN S H, CHEN X, et al.Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:3590-3598. [16] SI C Y, CHEN W T, WANG W, et al.An attention enhanced graph convolutional LSTM network for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:1227-1236. [17] SHI L, ZHANG Y F, CHENG J, et al.Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:7904-7913. [18] YAN S J, XIONG Y J, LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL].[2021-02-05].https://arxiv.org/abs/1801.07455. [19] 孔玮, 刘云, 李辉, 等.基于图卷积网络的行为识别方法综述[J].控制与决策, 2021, 36(7):1537-1546. KONG W, LIU Y, LI H, et al.A survey of action recognition methods based on graph convolutional network[J].Control and Decision, 2021, 36(7):1537-1546.(in Chinese) [20] SHI L, ZHANG Y F, CHENG J, et al.Decoupled spatial-temporal attention network for skeleton-based action-gesture recognition[EB/OL].[2021-02-05].https://openaccess.thecvf.com/content/ACCV2020/papers/Shi_Decoupled_Spatial-Temporal_Attention_Network_for_Skeleton-Based_Action-Gesture_Recognition_ACCV_2020_paper.pdf. [21] ZOPH B, VASUDEVAN V, SHLENS J, et al.Learning transferable architectures for scalable image recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8697-8710. [22] VANHOUCKE V, SENIOR A, MAO M Z.Improving the speed of neural networks on CPUs[EB/OL].[2021-02-05].https://research.google.com/pubs/archive/37631.pdf. [23] GONG Y C, LIU L, YANG M, et al.Compressing deep convolutional networks using vector quantization[EB/OL].[2021-02-05].https://arxiv.org/pdf/1412.6115.pdf. [24] COURBARIAUX M, BENGIO Y, DAVID J P.BinaryConnect:training deep neural networks with binary weights during propagations[EB/OL].[2021-02-05].https://arxiv.org/abs/1511.00363. [25] COURBARIAUX M, HUBARA I, SOUDRY D, et al.Binarized neural networks:training deep neural networks with weights and activations constrained to +1 or -1[EB/OL].[2021-02-05].https://arxiv.org/pdf/1602.02830.pdf. [26] RASTEGARI M, ORDONEZ V, REDMON J, et al.XNOR-Net:ImageNet classification using binary convolutional neural networks[EB/OL].[2021-02-05].https://arxiv.org/pdf/1603.05279.pdf. [27] HANSON S J, PRATT L Y.Comparing biases for minimal network construction with back-propagation[EB/OL].[2021-02-05].https://proceedings.neurips.cc/paper/1988/file/1c9ac0159c94d8d0cbedc973445af2da-Paper.pdf. [28] IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2021-02-05].https://arxiv.org/abs/1602.07360. [29] HOWARD A G, ZHU M L, CHEN B, et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].[2021-02-05].https://arxiv.org/abs/1704.04861. [30] 张洋, 姚登峰, 江铭虎, 等.基于EfficientDet网络的细粒度吸烟行为识别[J].计算机工程, 2022, 48(3):302-309, 314. ZHANG Y, YAO D F, JIANG M H, et al.Fine-grained smoking behavior recognition based on EfficientDet network[J].Computer Engineering, 2022, 48(3):302-309, 314.(in Chinese) [31] SHAHROUDY A, LIU J, NG T T, et al.NTU RGB+D:a large scale dataset for 3D human activity analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:1010-1019. [32] LIU J, SHAHROUDY A, PEREZ M, et al.NTU RGB D 120:a large-scale benchmark for 3D human activity understanding[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(10):2684-2701. [33] SHUMAN D I, NARANG S K, FROSSARD P, et al.The emerging field of signal processing on graphs:extending high-dimensional data analysis to networks and other irregular domains[J].IEEE Signal Processing Magazine, 2013, 30(3):83-98. [34] LI B, LI X, ZHANG Z F, et al.Spatio-temporal graph routing for skeleton-based action recognition[J].Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33:8561-8568. [35] PASZKE A, GROSS S, CHINTALA S, et al.Automatic differentiation in PyTorch[EB/OL].[2021-02-05].https://openreview.net/pdf?id=BJJsrmfCZ. |