1 |
WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]// Proceedings of IEEE Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7794-7803.
|
2 |
CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4724-4733.
|
3 |
WANG L, HUYNH D Q, KONIUSZ P. A comparative review of recent kinect-based action recognition algorithms. IEEE Transactions on Image Processing, 2020, 29, 15- 28.
doi: 10.1109/TIP.2019.2925285
|
4 |
胡建芳, 王熊辉, 郑伟诗, 等. RGB-D行为识别研究进展及展望. 自动化学报, 2019, 45 (5): 829- 840.
URL
|
|
HU J F, WANG X H, ZHENG W S, et al. RGB-D action recognition: recent advances and future perspectives. Acta Automatica Sinica, 2019, 45 (5): 829- 840.
URL
|
5 |
赫磊, 邵展鹏, 张剑华, 等. 基于深度学习的行为识别算法综述. 计算机科学, 2020, 47 (S01): 139- 147.
doi: 10.11896/jsjkx.190900176
|
|
HE L, SHAO Z P, ZHANG J H, et al. Review of deep learning-based action recognition algorithms. Computer Science, 2020, 47 (S01): 139- 147.
doi: 10.11896/jsjkx.190900176
|
6 |
ZHANG Z Y. Microsoft kinect sensor and its effect. IEEE MultiMedia, 2012, 19 (2): 4- 10.
doi: 10.1109/MMUL.2012.24
|
7 |
VEMULAPALLI R, ARRATE F, CHELLAPPA R. Human action recognition by representing 3D skeletons as points in a lie group[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 588-595.
|
8 |
KONIUSZ P, CHERIAN A, PORIKLI F. Tensor representations via kernel linearization for action recognition from 3D skeletons[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 37-53.
|
9 |
KONIUS Z P, WANG L, CHERIAN A. Tensor representations for action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (2): 648- 665.
doi: 10.1109/TPAMI.2021.3107160
|
10 |
HU J F, ZHENG W S, LAI J H, et al. Jointly learning heterogeneous features for RGB-D activity recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 5344-5352.
|
11 |
SHAHROUDY A, LIU J, NG T T, et al. NTU RGB D: a large scale dataset for 3D human activity analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1010-1019.
|
12 |
LI S, LI W Q, COOK C, et al. Independently recurrent neural network: building a longer and deeper RNN[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 5457-5466.
|
13 |
SI C Y, JING Y, WANG W, et al. Skeleton-based action recognition with spatial reasoning and temporal stack learning[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 106-121.
|
14 |
DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 1110-1118.
|
15 |
LI W B, WEN L Y, CHANG M C, et al. Adaptive RNN tree for large-scale human action recognition[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 1453-1461.
|
16 |
LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 816-833.
|
17 |
LIU J, WANG G, DUAN L Y, et al. Skeleton-based human action recognition with global context-aware attention LSTM networks. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2018, 27 (4): 1586- 1599.
doi: 10.1109/TIP.2017.2785279
|
18 |
KE Q H, BENNAMOUN M, AN S J, et al. A new representation of skeleton sequences for 3D action recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4570-4579.
|
19 |
KIM T S, REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2017: 1623-1631.
|
20 |
|
21 |
LIU M, LIU H, CHEN C. Enhanced skeleton visualization for view invariant human action recognition. Pattern Recognition, 2017, 68, 346- 362.
doi: 10.1016/j.patcog.2017.02.030
|
22 |
LIU M Y, YUAN J S. Recognizing human actions as the evolution of pose estimation maps[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1159-1168.
|
23 |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32 (1): 7444- 7452.
doi: 10.48550/arXiv.1801.07455
|
24 |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 12018-12027.
|
25 |
SHI L, ZHANG Y F, CHENG J, et al. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks. IEEE Transactions on Image Processing, 2020, 29, 9532- 9545.
doi: 10.1109/TIP.2020.3028207
|
26 |
SHI L, ZHANG Y F, CHENG J, et al. Skeleton-based action recognition with directed graph neural networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 7904-7913.
|
27 |
LIU Z Y, ZHANG H W, CHEN Z H, et al. Disentangling and unifying graph convolutions for skeleton-based action recognition[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 140-149.
|
28 |
DING X L, YANG K, CHEN W. A semantics-guided graph convolutional network for skeleton-based action recognition[C]//Proceedings of the 4th International Conference on Innovation in Artificial Intelligence. New York, USA: ACM Press, 2020: 130-136.
|
29 |
孙琪翔, 何宁, 张聪聪, 等. 基于轻量级图卷积的人体骨架动作识别方法. 计算机工程, 2022, 48 (5): 306- 313.
URL
|
|
SUN Q X, HE N, ZHANG C C, et al. Human skeleton action recognition method based on lightweight graph convolution. Computer Engineering, 2022, 48 (5): 306- 313.
URL
|
30 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2022: 13339-13348.
|
31 |
王小娟, 钟云, 金磊, 等. 基于骨架的自适应尺度图卷积动作识别. 天津大学学报(自然科学与工程技术版), 2022, 55 (3): 306- 312.
URL
|
|
WANG X J, ZHONG Y, JIN L, et al. Scale adaptive graph convolutional network for skeleton-based action recognition. Journal of Tianjin University (Science and Technology), 2022, 55 (3): 306- 312.
URL
|
32 |
ZHANG J X, YE G X, TU Z G, et al. A spatial attentive and temporal dilated (SATD) GCN for skeleton-based action recognition. CAAI Transactions on Intelligence Technology, 2022, 7 (1): 46- 55.
doi: 10.1049/cit2.12012
|
33 |
TU Z G, ZHANG J X, LI H Y, et al. Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition. IEEE Transactions on Multimedia, 2023, 25, 1819- 1831.
doi: 10.48550/arXiv.2202.04075
|
34 |
BIAN C L, FENG W, WANG S. Self-supervised representation learning for skeleton-based group activity recognition[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York, USA: ACM Press, 2022: 5990-5998.
|
35 |
|
36 |
|
37 |
NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]// Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 2014-2023.
|
38 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of Conference on Advances in Neural Information. Washington D. C., USA: IEEE Press, 2017: 76-85.
|
39 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washing D. C., USA: IEEE Press, 2016: 770-778.
|
40 |
LIU J, SHAHROUDY A, PEREZ M, et al. NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42 (10): 2684- 2701.
doi: 10.1109/tpami.2019.2916873
|