1 |
SHI L, ZHOU Y M, WANG J, et al. Compact global association based adaptive routing framework for personnel behavior understanding. Future Generation Computer Systems, 2023, 141, 514- 525.
doi: 10.1016/j.future.2022.12.002
|
2 |
YAN S, XIONG X H, ARNAB A, et al. Multiview transformers for video recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 3333-3343.
|
3 |
鹿天然, 于凤芹, 陈莹. 一种基于线性序列差异分析降维的人体行为识别方法. 计算机工程, 2019, 45(3): 237-241, 249.
URL
|
|
LU T R, YU F Q, CHEN Y. A human action recognition method based on LSDA dimension reduction. Computer Engineering, 2019, 45(3): 237-241, 249.
URL
|
4 |
|
5 |
王恩德, 刘巧英, 李勇. 基于LLC与GIST特征的静态人体行为分类. 计算机工程, 2018, 44(8): 268-272, 278.
URL
|
|
WANG E D, LIU Q Y, LI Y. Static human behavior classification based on LLC and GIST features. Computer Engineering, 2018, 44(8): 268-272, 278.
URL
|
6 |
REN Z L, ZHANG Q S, CHENG J, et al. Segment spatial-temporal representation and cooperative learning of convolution neural networks for multimodal-based action recognition. Neurocomputing, 2021, 433, 142- 153.
doi: 10.1016/j.neucom.2020.12.020
|
7 |
宋真东, 杨国超, 马玉鹏, 等. 基于注意力机制的多模态人体行为识别算法. 计算机测量与控制, 2022, 30(2): 276- 283.
URL
|
|
SONG Z D, YANG G C, MA Y P, et al. Multi-modal human behavior recognition algorithm based on attention mechanism. Computer Measurement & Control, 2022, 30(2): 276- 283.
URL
|
8 |
WANG L M, XIONG Y J, WANG Z, et al. Temporal segment networks: towards good practices for deep action recognition[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 20-36.
|
9 |
GU Y, SHENG W H, OU Y S, et al. Human action recognition with contextual constraints using a RGB-D sensor[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics. Washington D. C., USA: IEEE Press, 2013: 674-679.
|
10 |
LIU J, SHAHROUDY A, XU D, et al. Spatio-temporal LSTM with trust gates for 3D human action recognition[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2016: 816-833.
|
11 |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[EB/OL]. [2023-05-10]. https://arxiv.org/abs/1801.07455.
|
12 |
LI M S, CHEN S H, CHEN X, et al. Actional-structural graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3595-3603.
|
13 |
CHEN Y X, ZHANG Z Q, YUAN C F, et al. Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 13359-13368.
|
14 |
ZHANG P F, LAN C L, ZENG W J, et al. Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1112-1121.
|
15 |
ZHANG J X, YE G X, TU Z G, et al. A spatial attentive and temporal dilated(SATD) GCN for skeleton-based action recognition. CAAI Transactions on Intelligence Technology, 2022, 7(1): 46- 55.
doi: 10.1049/cit2.12012
|
16 |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 12026-12035.
|
17 |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 183-192.
|
18 |
XIE J, MIAO Q G, LIU R Y, et al. Attention adjacency matrix based graph convolutional networks for skeleton-based action recognition. Neurocomputing, 2021, 440, 230- 239.
doi: 10.1016/j.neucom.2021.02.001
|
19 |
CHI H G, HA M H, CHI S, et al. InfoGCN: representation learning for human skeleton-based action recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 20186-20196.
|
20 |
YANG S Y, LIU J, LU S J, et al. Skeleton cloud colorization for unsupervised 3D action representation learning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 13423-13433.
|
21 |
HEDEGAARD L, HEIDARI N, IOSIFIDIS A. Continual spatio-temporal graph convolutional networks. Pattern Recognition, 2023, 140, 109528.
doi: 10.1016/j.patcog.2023.109528
|
22 |
KIM T S, REITER A. Interpretable 3D human action analysis with temporal convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 1623-1631.
|
23 |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2016: 3844-3852.
|
24 |
van den OORD A, KALCHBRENNER N, KAVUKCUOGLU K. Pixel recurrent neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning. New York, USA: ACM Press, 2016: 2611-2620.
|
25 |
WANG H S, WANG L. Modeling temporal dynamics and spatial configurations of actions using two-stream recurrent neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 499-508.
|
26 |
TU Z G, ZHANG J X, LI H Y, et al. Joint-bone fusion graph convolutional network for semi-supervised skeleton action recognition. IEEE Transactions on Multimedia, 2023, 25, 1819- 1831.
doi: 10.1109/TMM.2022.3168137
|
27 |
ZHANG P F, LAN C L, XING J L, et al. View adaptive neural networks for high performance skeleton-based human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(8): 1963- 1978.
doi: 10.1109/TPAMI.2019.2896631
|
28 |
SHI L, ZHANG Y F, CHENG J, et al. AdaSGN: adapting joint number and model size for efficient skeleton-based action recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 13413-13422.
|
29 |
PLIZZARI C, CANNICI M, MATTEUCCI M. Spatial temporal transformer network for skeleton-based action recognition[C]//Proceedings of International Conference on Pattern Recognition. New York, USA: ACM Press, 2021: 694-701.
|
30 |
CAETANO C, BREMOND F, SCHWARTZ W R. Skeleton image representation for 3D action recognition based on tree structure and reference joints[C]//Proceedings of the 32nd SIBGRAPI Conference on Graphics, Patterns and Images. Washington D. C., USA: IEEE Press, 2019: 16-23.
|
31 |
LIAO S, LYONS T, YANG W, et al. Learning stochastic differential equations using RNN with log signature features[EB/OL]. [2023-05-10]. https://arxiv.org/pdf/1908.08286v2.
|
32 |
MEMMESHEIMER R, THEISEN N, PAULUS D. Gimme Signals: discriminative signal encoding for multimodal activity recognition[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2020: 10394-10401.
|
33 |
PENG W, SHI J G, XIA Z Q, et al. Mix Dimension in Poincaré geometry for 3D skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 1432-1440.
|
34 |
SONG Y F, ZHANG Z, SHAN C F, et al. Richly activated graph convolutional network for robust skeleton-based action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(5): 1915- 1925.
doi: 10.1109/TCSVT.2020.3015051
|