[1] GENTRY C, HALEVI S.Implementing gentry's fully-homomorphic encryption scheme[C]//Proceedings of Annual International Conference on the Theory and Applications of Cryptographic Techniques.Berlin, Germany:Springer, 2011:129-148. [2] SHAMIR A.How to share a secret[J].Communications of the ACM, 1979, 22(11):612-613. [3] RABIN M O.How to exchange secrets by oblivious transfer:TR-81[R].Aiken Computation Laboratory, Harvard University, 1981. [4] DAMGÅRD I, PASTRO V, SMART N, et al.Multiparty computation from somewhat homomorphic encryption[C]//Proceedings of CRYPTOʼ12.Berlin, Germany:Springer, 2012:643-662. [5] DEMMLER D, SCHNEIDER T, ZOHNER M.ABY-A framework for efficient mixed-protocol secure two-party computation[C]//Proceedings of 2015 Network and Distributed System Security Symposium.Washington D.C., USA:IEEE Press, 2015:257-268. [6] MCMAHAN B, MOORE E, RAMAGE D, et al.Communication-efficient learning of deep networks from decentralized data[C]//Proceedings of IEEE PMLRʼ17.Washington D.C., USA:IEEE Press, 2017:1273-1282. [7] PAPERNOT N, ABADI M, ERLINGSSON Ú, et al.Semi-supervised knowledge transfer for deep learning from private training data[EB/OL].[2022-03-10].https://arxiv.org/abs/1610.05755. [8] YUROCHKIN M, AGARWAL M, GHOSH S, et al.Bayesian nonparametric federated learning of neural networks[EB/OL].[2022-03-10].https://arxiv.org/abs/1905.12022. [9] YANG T, ANDREW G, EICHNER H, et al.Applied federated learning:improving google keyboard query suggestions[EB/OL].[2022-03-10].https://arxiv.org/abs/1812.02903. [10] HARDY S, HENECKA W, IVEY-LAW H, et al.Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[EB/OL].[2022-03-10].https://arxiv.org/abs/1711.10677. [11] SHARMA S, XING C P, LIU Y, et al.Secure and efficient federated transfer learning[C]//Proceedings of 2019 IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2019:2569-2576. [12] GEYER R C, KLEIN T, NABI M.Differentially private federated learning:a client level perspective[EB/OL].[2022-03-10].https://arxiv.org/abs/1712.07557. [13] MOHASSEL P, ZHANG Y P.SecureML:a system for scalable privacy-preserving machine learning[C]//Proceedings of IEEE Symposium on Security and Privacy.Washington D.C., USA:IEEE Press, 2017:19-38. [14] LIU Y, KANG Y, XING C P, et al.A secure federated transfer learning framework[J].IEEE Intelligent Systems, 2020, 35(4):70-82. [15] PAILLIER P.Public-key cryptosystems based on composite degree residuosity classes[C]//Proceedings of International Conference on the Theory and Applications of Cryptographic Techniques.Berlin, Germany:Springer, 1999:223-238. [16] ZHANG C, LI S, XIA J, et al.BatchCrypt:efficient homomorphic encryption for cross-silo federated learning[C]//Proceedings of 2020 USENIX Annual Technical Conference.Washington D.C., USA:IEEE Press, 2020:493-506. [17] KONEČNÝ J, MCMAHAN H B, RAMAGE D, et al.Federated optimization:distributed machine learning for on-device intelligence[EB/OL].[2022-03-10].https://arxiv.org/abs/1610.02527. [18] NAOR M, PINKAS B.Efficient oblivious transfer protocols[C]//Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms.New York, USA:ACM Press, 2001:448-457. [19] ISHAI Y, KILIAN J, NISSIM K, et al.Extending oblivious transfers efficiently[C]//Proceedings of CRYPTO'03.Berlin, Germany:Springer, 2003:145-161. [20] AONO Y, HAYASHI T, PHONG L T, et al.Scalable and secure logistic regression via homomorphic encryption[C]//Proceedings of the 6th ACM Conference on Data and Application Security and Privacy.New York, USA:ACM Press, 2016:142-144. [21] PHONG L T, AONO Y, HAYASHI T, et al.Privacy-preserving deep learning via additively homomorphic encryption[J].IEEE Transactions on Information Forensics and Security, 2018, 13(5):1333-1345. [22] KIM A, SONG Y, KIM M, et al.Logistic regression model training based on the approximate homomorphic encryption[J].BMC Medical Genomics, 2018, 11(4):83. [23] CHEN H, KIM M, RAZENSHTEYN I, et al.Maliciously secure matrix multiplication with applications to private deep learning[C]//Proceedings of ASIACRYPT'20.Berlin, Germany:Springer, 2020:31-59. [24] BOYLE E, COUTEAU G, GILBOA N, et al.Efficient pseudorandom correlation generators:silent OT extension and more[C]//Proceedings of CRYPTO'19.Berlin, Germany:Springer, 2019:489-518. [25] BONAWITZ K, EICHNER H, GRIESKAMP W, et al.Towards federated learning at scale:system design[EB/OL].[2022-03-10].https://arxiv.org/abs/1902.01046. |