[1] PALLONETTO F, DE ROSA M, MILANO F, et al.Demand response algorithms for smart-grid ready residential buildings using machine learning models[J].Applied Energy, 2019, 239:1265-1282. [2] WANG W, ZHENG H S, WU Y J.Prediction of fundraising outcomes for crowdfunding projects based on deep learning:a multimodel comparative study[J].Soft Computing, 2020, 24(11):8323-8341. [3] REHOUMA R, BUCHERT M, CHEN Y P.Machine learning for medical imaging-based COVID-19 detection and diagnosis[J].International Journal of Intelligent Systems, 2021, 36(9):5085-5115. [4] HOOSHMAND A.Accurate diagnosis of prostate cancer using logistic regression[J].Open Medicine, 2021, 16(1):459-463. [5] CHOWANDA A, SUTOYO R, MEILIAN A, et al.Exploring text-based emotions recognition machine learning techniques on social media conversation[J].Procedia Computer Science, 2021, 179(1):821-828. [6] CVITIC I, PERAKOVIC D, PERISA M, et al.Ensemble machine learning approach for classification of IoT devices in smart home[J].International Journal of Machine Learning and Cybernetics, 2021, 12(11):3179-3202. [7] HOU R, KONG Y Q, CAI B, et al.Unstructured big data analysis algorithm and simulation of Internet of things based on machine learning[J].Neural Computing and Applications, 2020, 32(10):5399-5407. [8] GUO W, SHAO J, LU R X, et al.A privacy-preserving online medical prediagnosis scheme for cloud environment[J].IEEE Access, 2018, 6:48946-48957. [9] FAN Y K, BAI J R, LEI X, et al.Privacy preserving based logistic regression on big data[J].Journal of Network and Computer Applications, 2020, 171:102769. [10] CHEN H, GILAD-BACHRACH R, HAN K, et al.logistic regression over encrypted data from fully homomorphic encryption[J].BMC Medical Genomics, 2018, 11(4):3-12. [11] 许心炜, 蔡斌, 向宏, 等.基于同态加密的多分类逻辑回归模型[J].密码学报, 2020, 7(2):179-186. XU X W, CAI B, XIANG H, et al.Multinomial logistic regression model based on homomorphic encryption[J].Journal of Cryptologic Research, 2020, 7(2):179-186.(in Chinese) [12] 宋蕾, 马春光, 段广晗, 等.基于数据纵向分布的隐私保护逻辑回归[J].计算机研究与发展, 2019, 56(10):2243-2249. SONG L, MA C G, DUAN G H, et al.Privacy-preserving logistic regression on vertically partitioned data[J].Journal of Computer Research and Development, 2019, 56(10):2243-2249.(in Chinese) [13] 郭娟娟, 王琼霄, 许新, 等.安全多方计算及其在机器学习中的应用[J].计算机研究与发展, 2021, 58(10):2163-2186. GUO J J, WANG Q X, XU X, et al.Secure multiparty computation and application in machine learning[J].Journal of Computer Research and Development, 2021, 58(10):2163-2186.(in Chinese) [14] GUYON I, LI J W, MADER T, et al.Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark[J].Pattern Recognition Letters, 2007, 28(12):1438-1444. [15] MOHASSEL P, ZHANG Y P.SecureML:a system for scalable privacy-preserving machine learning[C]//Proceedings of IEEE Symposium on Security and Privacy.Washington D.C., USA.IEEE Press, 2017:19-38. [16] MARTINE D C, DOWSLEY R, NASCIMENTO A C A, et al.High performance logistic regression for privacy-preserving genome analysis[J].BMC Medical Genomics, 2021, 14(1):1-18. [17] 郑云涛, 叶家炜.基于OT协议的FATE联邦迁移学习方案[J].计算机工程, 2023, 49(2):24-30. ZHENG Y T, YE J W.FATE federated transfer learning scheme based on OT protocol[J].Computer Engineering, 2023, 49(2):24-30.(in Chinese) [18] LI T, LI J, CHEN X F, et al.NPMML:A framework for non-interactive privacy-preserving multi-party machine learning[J].IEEE Transactions on Dependable and Secure Computing, 2021, 18(6):2969-2982. [19] MA X, CHEN X F, ZHANG X Y.Non-interactive privacy-preserving neural network prediction[J].Information Sciences, 2019, 481:507-519. [20] WANG F W, ZHU H, LU R X, et al.A privacy-preserving and non-interactive federated learning scheme for regression training with gradient descent[J].Information Sciences, 2021, 552:183-200. [21] PREGIBON D.logistic regression diagnostics[J].The Annals of Statistics, 1981, 9(4):705-724. [22] HARDY S, HENECKA W, IVEY-LAW H, et al.Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption[EB/OL].[2022-07-10].https://arxiv.org/abs/1711.10677. [23] BEAVER D.Commodity-based cryptography[C]//Proceedings of the 29th Annual ACM Symposium on Theory of Computing.New York, USA:ACM Press, 1997:446-455. [24] KINCAID D, CHENEY W.Numerical analysis-mathematics of scientific computing[J].Mathematics of Computation, 1992, 59(199):297. [25] BENNETT P H, BURCH T A, MILLER M.Diabetesmellitus in American(Pima) Indians[J].The Lancet, 1971, 298(7716):125-128. [26] MANGASARIAN O L, SETIONO R, WOLBERG WH.Pattern recognition via linear programming:theory and application to medical diagnosis[EB/OL].[2022-07-10].http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29. [27] DETRANO R, JANOSI A, STEINBRUNN W, et al.International application of a new probability algorithm for the diagnosis of coronary artery disease[J].The American Journal of Cardiology, 1989, 64(5):304-310. [28] Quinlan J R.Simplifying decision trees[J].International Journal of Man-machine Studies, 1987, 27(3):221-234. [29] JIANG Y C, HAMER J, WANG C H, et al.SecureLR:secure logistic regression model via a hybrid cryptographic protocol[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 16(1):113-123. |