[1] DOSHI K, YILMAZ Y.Road damage detection using deep ensemble learning[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2020:5540-5544. [2] 王程, 刘元盛, 刘圣杰.基于改进YOLOv4的小目标行人检测算法[J/OL].计算机工程:1-9[2022-05-01].DOI:10.19678/j.issn.1000-3428.0063623. WANG C, LIU Y S, LIU S J.Small target detection algorithm based on improved YOLOv4 for pedestrian[J/OL].Computer Engineering:1-9[2022-05-01].DOI:10.19678/j.issn.1000-3428.0063623.(in Chinese) [3] TACK A, PREIM B, ZACHOW S.Fully automated assessment of knee alignment from full-leg x-rays employing a "YOLOv4 and Resnet landmark regression algorithm"(YARLA):data from the osteoarthritis initiative[J].Computer Methods and Programs in Biomedicine, 2021, 205:106080. [4] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [5] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [6] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [7] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2980-2988. [8] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:779-788. [9] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multi-box detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2015:21-37. [10] GOU C, PENG B, LI T R, et al.Pavement crack detection based on the improved Faster-RCNN[C]//Proceedings of the 14th International Conference on Intelligent Systems and Knowledge Engineering.Washington D.C., USA:IEEE Press, 2019:962-967. [11] 章世祥, 张汉成, 李西芝, 等.基于机器视觉的路面裂缝病害多目标识别研究[J].公路交通科技, 2021, 38(3):30-39. ZHANG S X, ZHANG H C, LI X Z, et al.Study on multi-objective identification of pavement cracks based on machine vision[J].Journal of Highway and Transportation Research and Development, 2021, 38(3):30-39.(in Chinese) [12] HUANG R, PEDOEEM J, CHEN C X.YOLO-LITE:a real-time object detection algorithm optimized for non-GPU computers[C]//Proceedings of IEEE International Conference on Big Data.Washington D.C., USA:IEEE Press, 2018:2503-2510. [13] NIE M X, WANG C.Pavement crack detection based on yolo v3[C]//Proceedings of the 2nd International Conference on Safety Produce Informatization.Washington D.C., USA:IEEE Press, 2019:327-330. [14] FARAMARZI M.Road damage detection and classification using deep neural networks(YOLOv4) with smartphone images[EB/OL].[2022-05-01].https://ssrn.com/abstract=3627382. [15] YAN K, ZHANG Z H.Automated asphalt highway pavement crack detection based on deformable single shot multi-box detector under a complex environment[J].IEEE Access, 2021, 9:150925-150938. [16] SONG K, ZHOU X Q, YU H, et al.Towards better word alignment in Transformer[J].ACM Transactions on Audio, Speech, and Language Processing, 2020, 28:1801-1812. [17] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.An image is worth 16×16 words:Transformers for image recognition at scale[EB/OL].[2022-05-01].https://arxiv.org/abs/2010.11929. [18] LIU Z, LIN Y T, CAO Y, et al.Swin Transformer:hierarchical vision Transformer using shifted windows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2021:9992-10002. [19] HOU Q B, ZHOU D Q, FENG J S.Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:13708-13717. [20] TAN M X, PANG R M, LE Q V.EfficientDet:scalable and efficient object detection[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:10778-10787. [21] MAHENDRAKAR T, WHITE R T, WILDE M, et al.Real-time satellite component recognition with YOLOv5[C]//Proceedings of Small Satellite Conference.Logan, USA:[s.n.], 2021:1-12. [22] LONG X, DENG K, WANG G, et al.PP-YOLO:an effective and efficient implementation of object detector[EB/OL].[2022-05-01].https://arxiv.org/abs/2007.12099. [23] CHENG S, WANG L, DU A.Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification[J].Scientific Reports, 2021, 11(1):1-17. [24] ZHU L L, GENG X, LI Z, et al.Improving YOLOv5 with attention mechanism for detecting boulders from planetary images[J].Remote Sensing, 2021, 13(18):3776. [25] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [26] 交通运输部公路科学研究院.公路技术状况评定标准:JTG 5210-2018[S].北京:人民交通出版社, 2018. Institute of Highway Science, Ministry of Transport.Highway technical condition evaluation standard:JTG 5210-2018[S].Beijing:People's Communications Press, 2018.(in Chinese). |