[1] ZHANG Y, ZHOU Z X, DAVID P, et al.PolarNet:an improved grid representation for online LiDAR point clouds semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:9598-9607. [2] KIM M, ILYAS N, KIM K.AMSASeg:an attention-based multi-scale atrous convolutional neural network for real-time object segmentation from 3D point cloud[J].IEEE Access, 2021, 9:70789-70796. [3] CHENG R, RAZANI R, TAGHAVI E, et al.(AF)2-S3Net:attentive feature fusion with adaptive feature selection for sparse semantic segmentation network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2021:12542-12551. [4] ZHU X G, ZHOU H, WANG T, et al.Cylindrical and asymmetrical 3D convolution networks for LiDAR-based perception[C]//Proceedings of Conference on Transactions on Pattern Analysis and Machine Intelligence.Washington D.C., USA:IEEE Press, 2021:6807-6822. [5] 杨晓文, 李静, 韩燮, 等.基于八叉树的卷积神经网络三维模型分割[J].计算机工程与设计, 2020, 41(9):2663-2669. YANG X W, LI J, HAN X, et al.Octree-based convolutional neural networks for 3D model segmentation[J].Computer Engineering and Design, 2020, 41(9):2663-2669.(in Chinese) [6] CHARLES R Q, HAO S, MO K C, et al.PointNet:deep learning on point sets for 3D classification and segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:77-85. [7] QI C R, YI L, SU H, et al.PointNet++:deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2017:5105-5114. [8] THOMAS H, QI C R, DESCHAUD J E, et al.KPConv:flexible and deformable convolution for point clouds[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:6410-6419. [9] 杨军, 党吉圣.基于上下文注意力CNN的三维点云语义分割[J].通信学报, 2020, 41(7):195-203. YANG J, DANG J S.Semantic segmentation of 3D point cloud based on contextual attention CNN[J].Journal of Communications, 2020, 41(7):195-203.(in Chinese) [10] 白静, 徐浩钧.MSP-Net:多尺度点云分类网络[J].计算机辅助设计与图形学学报, 2019, 31(11):1917-1924. BAI J, XU H J.MSP-Net:multi-scale point cloud classification network[J].Journal of Computer-Aided Design & Computer Graphics, 2019, 31(11):1917-1924.(in Chinese) [11] 田钰杰, 管有庆, 龚锐.一种鲁棒的多特征点云分类分割深度神经网络[J].计算机工程, 2021, 47(11):234-240. TIAN Y J, GUAN Y Q, GONG R.A robust deep neural network for multi-feature point cloud classification and segmentation[J].Computer Engineering, 2021, 47(11):234-240.(in Chinese) [12] 于丽丽, 于海洋, 何子鑫, 等.基于双注意力机制和多尺度特征的点云场景分割[J].激光与光电子学进展, 2021, 58(24):471-479. YU L L, YU H Y, HE Z X, et al.Point cloud scene segmentation based on dual attention mechanism and multi-scale features[J].Laser & Optoelectronics Progress, 2021, 58(24):471-479.(in Chinese) [13] LIN H J, LUO Z P, LI W, et al.Adaptive pyramid context fusion for point cloud perception[J].IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [14] LANDRIEU L, SIMONOVSKY M.Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:4558-4567. [15] HU Q Y, YANG B, XIE L H, et al.RandLA-Net:efficient semantic segmentation of large-scale point clouds[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:11105-11114. [16] SHUAI H, XU X, LIU Q S.Backward attentive fusing network with local aggregation classifier for 3D point cloud semantic segmentation[J].IEEE Transactions on Image Processing, 2021, 30:4973-4984. [17] LIU H, GUO Y L, MA Y N, et al.Semantic context encoding for accurate 3D point cloud segmentation[J].IEEE Transactions on Multimedia, 2021, 23:2045-2055. [18] DENG S, DONG Q L.GA-NET:global attention network for point cloud semantic segmentation[J].IEEE Signal Processing Letters, 2021, 28:1300-1304. [19] GUO M H, CAI J X, LIU Z N, et al.PCT:point cloud Transformer[J].Computational Visual Media, 2021, 7(2):187-199. [20] BEHLEY J, GARBADE M, MILIOTO A, et al.SemanticKITTI:a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9296-9306. [21] HACKEL T, SAVINOV N, LADICKY L, et al.Semantic3D net:a new large-scale point cloud classification benchmark[EB/OL].[2021-11-25].https://arxiv.org/pdf/1704.03847.pdf. [22] SU H, JAMPANI V, SUN D Q, et al.SPLATNet:sparse lattice networks for point cloud processing[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:2530-2539. [23] TATARCHENKO M, PARK J, KOLTUN V, et al.Tangent convolutions for dense prediction in 3D[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:3887-3896. [24] WU B C, WAN A, YUE X Y, et al.SqueezeSeg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2018:1887-1893. [25] WU B C, ZHOU X Y, ZHAO S C, et al.SqueezeSegV2:improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud[C]//Proceedings of International Conference on Robotics and Automation.Washington D.C., USA:IEEE Press, 2019:4376-4382. [26] MILIOTO A, VIZZO I, BEHLEY J, et al.RangeNet++:fast and accurate LiDAR semantic segmentation[C]//Proceedings of International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2019:4213-4220. [27] TCHAPMI L, CHOY C, ARMENI I, et al.SEGCloud:semantic segmentation of 3D point clouds[C]//Proceedings of International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2017:537-547. [28] THOMAS H, GOULETTE F, DESCHAUD J E, et al.Semantic classification of 3D point clouds with multiscale spherical neighborhoods[C]//Proceedings of International Conference on 3D Vision.Washington D.C., USA:IEEE Press, 2018:390-398. [29] ZHANG Z Y, HUA B S, YEUNG S K.ShellNet:efficient point cloud convolutional neural networks using concentric shells statistics[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1607-1616. [30] WANG L, HUANG Y C, HOU Y L, et al.Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2019:10288-10297. |