1 |
VOIGT P, VON DEM BUSSCHE A. Scope of application of the GDPR[M]//VOIGT P, VON DEM BUSSCHE A. The EU general data protection regulation. Berlin, Germany: Springer, 2017: 9-30.
|
2 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. [2022-01-02]. https://arxiv.org/abs/1602.05629.
|
3 |
|
4 |
LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2999-3007.
|
5 |
WANG K Y, ZHANG L. Single-shot two-pronged detector with rectified IoU loss[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York, USA: ACM Press, 2020: 1311-1319.
|
6 |
HE H B, GARCIA E A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263- 1284.
doi: 10.1109/TKDE.2008.239
|
7 |
TOLPEGIN V, TRUEX S, GURSOY M E, et al. Data poisoning attacks against federated learning systems[C]//Proceedings of European Symposium on Research in Computer Security. Berlin, Germany: Springer, 2020: 480-501.
|
8 |
BLANCHARD P, EL MHAMDI E M, GUERRAOUI R, et al. Byzantine tolerant gradient descent for distributed machine learning with adversaries: US20200380340[P]. 2020-12-03.
|
9 |
SHAYAN M, FUNG C, YOON C J M, et al. Biscotti: a blockchain system for private and secure federated learning. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(7): 1513- 1525.
doi: 10.1109/TPDS.2020.3044223
|
10 |
VAN HULSE J, KHOSHGOFTAAR T M, NAPOLITANO A. Experimental perspectives on learning from imbalanced data[C]//Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM Press, 2007: 935-942.
|
11 |
MANI I, ZHANG I. kNN approach to unbalanced data distributions: a case study involving information extraction[C]//Proceedings of Workshop on Learning from Imbalanced Datasets. [S. l. ]: ICML, 2003: 1-7.
|
12 |
LEE H S, PARK M, KIM J. Plankton classification on imbalanced large scale database via convolutional neural networks with transfer learning[C]//Proceedings of IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2016: 3713-3717.
|
13 |
POUYANFAR S, TAO Y D, MOHAN A, et al. Dynamic sampling in convolutional neural networks for imbalanced data classification[C]//Proceedings of IEEE Conference on Multimedia Information Processing and Retrieval. Washington D. C., USA: IEEE Press, 2018: 112-117.
|
14 |
LING C X, SHENG V S. Cost-sensitive learning and the class imbalance problem[M]//SAMMUT C. Encyclopedia of machine learning. Berlin, Germany: Springer, 2008: 231-235.
|
15 |
CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 9260-9269.
|
16 |
ELKAN C. The foundations of cost-sensitive learning[C]//Proceedings of the 17th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2001: 973-978.
|
17 |
LI B Y, LIU Y, WANG X G. Gradient harmonized single-stage detector. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8577- 8584.
doi: 10.1609/aaai.v33i01.33018577
|
18 |
LUO H S, JI L, LI T R, et al. GRACE: gradient harmonized and cascaded labeling for aspect-based sentiment analysis[EB/OL]. [2022-01-02]. https://arxiv.org/abs/2009.10557.
|
19 |
LIU X Y, WU J X, ZHOU Z H. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 2009, 39(2): 539- 550.
doi: 10.1109/TSMCB.2008.2007853
|
20 |
CHAWLA N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: improving prediction of the minority class in boosting[C]//Proceedings of European Conference on Principles of Data Mining and Knowledge Discovery. Berlin, Germany: Springer, 2003: 107-119.
|
21 |
DUAN M M, LIU D, CHEN X Z, et al. Self-balancing federated learning with global imbalanced data in mobile systems. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(1): 59- 71.
doi: 10.1109/TPDS.2020.3009406
|
22 |
MOHRI M, SIVEK G, SURESH A T. Agnostic federated learning[C]//Proceedings of International Conference on Machine Learning. [S. l. ]: PMLR, 2019: 4615-4625.
|
23 |
CHEN F, LUO M, DONG Z H, et al. Federated meta-learning with fast convergence and efficient communication[EB/OL]. [2022-01-02]. https://arxiv.org/abs/1802.07876.
|
24 |
LIU Y, AI Z P, SUN S, et al. FedCoin: a peer-to-peer payment system for federated learning[M]//YANG Q, FAN L, YU H. Federated learning. Berlin, Germany: Springer, 2020: 125-138.
|
25 |
KANG J W, XIONG Z H, NIYATO D, et al. Incentive mechanism for reliable federated learning: a joint optimization approach to combining reputation and contract theory. IEEE Internet of Things Journal, 2019, 6(6): 10700- 10714.
doi: 10.1109/JIOT.2019.2940820
|
26 |
|
27 |
LI M, WANG Q G, ZHANG W L. Blockchain-based distributed machine learning towards statistical challenges[C]//Proceedings of International Conference on Blockchain and Trustworthy Systems. Berlin, Germany: Springer, 2020: 549-564.
|
28 |
ZHAI K, REN Q, WANG J L, et al. Byzantine-robust federated learning via credibility assessment on non-IID data[EB/OL]. [2022-01-02]. https://arxiv.org/abs/2109.02396.
|
29 |
KRISHNA K, NARASIMHA MURTY M. Genetic K-means algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B(Cybernetics), 1999, 29(3): 433- 439.
doi: 10.1109/3477.764879
|
30 |
王琦, 曹卫权, 梁杰, 等. 面向端到端溯源攻击对手的Tor安全性模型. 计算机工程, 2021, 47(11): 136- 143.
URL
|
|
WANG Q, CAO W Q, LIANG J, et al. Tor security model for end-to-end source tracking attack adversary. Computer Engineering, 2021, 47(11): 136- 143.
URL
|
31 |
GENTRY C, BONEH D. A fully homomorphic encryption scheme. Palo Alto, USA: Stanford University Press, 2009.
|
32 |
CRAMER R, DAMGÅRD I B, NIELSEN J B. Secure multiparty computation and secret sharing. Cambridge, UK: Cambridge University Press, 2015.
|