1 |
TAKETOMI T, UCHIYAMA H, IKEDA S. Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Transactions on Computer Vision and Applications, 2017, 9(1): 1- 11.
doi: 10.1186/s41074-016-0012-1
|
2 |
伍子嘉, 陈航, 彭勇, 等. 动态环境下融合轻量级YOLOv5s的视觉SLAM. 计算机工程, 2022, 48(8): 187-195, 205
doi: 10.19678/j.issn.1000-3428.0062294
|
|
WU Z J, CHEN H, PENG Y, et al. Visual SLAM with lightweight YOLOv5s in dynamic environment. Computer Engineering, 2022, 48(8): 187-195, 205
doi: 10.19678/j.issn.1000-3428.0062294
|
3 |
ENGEL J, SCHÖPS T, CREMERS D. LSD-SLAM: large-scale direct monocular SLAM[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2014: 834-849.
|
4 |
ENGEL J, KOLTUN V, CREMERS D. Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 611- 625.
doi: 10.1109/TPAMI.2017.2658577
|
5 |
MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147- 1163.
doi: 10.1109/TRO.2015.2463671
|
6 |
KLEIN G, MURRAY D. Parallel tracking and mapping for small AR workspaces[C]//Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Washington D. C., USA: IEEE Press, 2008: 225-234.
|
7 |
马科伟, 张锲石, 康宇航, 等. 移动机器人中视觉里程计技术综述. 计算机工程, 2021, 47(11): 1- 10.
doi: 10.19678/j.issn.1000-3428.0060829
|
|
MA K W, ZHANG Q S, KANG Y H, et al. Overview of visual odometry technology in mobile robots. Computer Engineering, 2021, 47(11): 1- 10.
doi: 10.19678/j.issn.1000-3428.0060829
|
8 |
陶交, 范馨月, 周非. 点线特征融合的双目视觉SLAM算法. 小型微型计算机系统, 2022, 43(6): 1191- 1196.
doi: 10.20009/j.cnki.21-1106/TP.2020-1061
|
|
TAO J, FAN X Y, ZHOU F. Point-line feature fusion in stereo visual SLAM algorithm. Journal of Chinese Computer Systems, 2022, 43(6): 1191- 1196.
doi: 10.20009/j.cnki.21-1106/TP.2020-1061
|
9 |
FORSTER C, PIZZOLI M, SCARAMUZZA D. SVO: fast semi-direct monocular visual odometry[C]//Proceedings of IEEE International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2014: 15-22.
|
10 |
FORSTER C, ZHANG Z C, GASSNER M, et al. SVO: semidirect visual odometry for monocular and multicamera systems. IEEE Transactions on Robotics, 2017, 33(2): 249- 265.
doi: 10.1109/TRO.2016.2623335
|
11 |
CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Transactions on Robotics, 2021, 37(6): 1874- 1890.
doi: 10.1109/TRO.2021.3075644
|
12 |
RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2012: 2564-2571.
|
13 |
YU C, LIU Z X, LIU X J, et al. DS-SLAM: a semantic visual SLAM towards dynamic environments[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Washington D. C., USA: IEEE Press, 2019: 1168-1174.
|
14 |
BESCOS B, FÁCIL J M, CIVERA J, et al. DynaSLAM: tracking, mapping, and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 2018, 3(4): 4076- 4083.
doi: 10.1109/LRA.2018.2860039
|
15 |
AI Y B, RUI T, LU M, et al. DDL-SLAM: a robust RGB-D SLAM in dynamic environments combined with deep learning. IEEE Access, 2020, 8, 162335- 162342.
doi: 10.1109/ACCESS.2020.2991441
|
16 |
ZHAO X, ZUO T, HU X Y. OFM-SLAM: a visual semantic SLAM for dynamic indoor environments. Mathematical Problems in Engineering, 2021, 12(6): 45- 56.
|
17 |
SONG H C, KNAG M S, KIMG T E. Object detection based on mask R-CNN from infrared camera. Journal of Digital Contents Society, 2018, 19(6): 1213- 1218.
doi: 10.9728/dcs.2018.19.6.1213
|
18 |
WADHWA L, MUKHERJEE S. Learnable spatiotemporal feature pyramid for prediction of future optical flow in videos. Machine Vision and Applications, 2020, 32(1): 298- 311.
|
19 |
LIU Y B, MIURA J. RDS-SLAM: real-time dynamic SLAM using semantic segmentation methods. IEEE Access, 2021, 9, 23772- 23785.
doi: 10.1109/ACCESS.2021.3050617
|
20 |
冯一博, 张小俊, 王金刚. 适用于室内动态场景的视觉SLAM算法研究. 燕山大学学报, 2022, 46(4): 319- 326.
URL
|
|
FENG Y B, ZHANG X J, WANG J G. Research on visual SLAM algorithm suitable for indoor dynamic scenes. Journal of Yanshan University, 2022, 46(4): 319- 326.
URL
|
21 |
高兴波, 史旭华, 葛群峰, 等. 面向动态物体场景的视觉SLAM综述. 机器人, 2021, 43(6): 733- 750.
URL
|
|
GAO X B, SHI X H, GE Q F, et al. A survey of visual SLAM for scenes with dynamic objects. Robot, 2021, 43(6): 733- 750.
URL
|
22 |
丁文东, 徐德, 刘希龙, 等. 移动机器人视觉里程计综述. 自动化学报, 2018, 44(3): 385- 400.
URL
|
|
DING W D, XU D, LIU X L, et al. Review on visual odometry for mobile robots. Acta Automatica Sinica, 2018, 44(3): 385- 400.
URL
|
23 |
LI G H, CHEN S L. Visual slam in dynamic scenes based on object tracking and static points detection. Journal of Intelligent & Robotic Systems, 2022, 104(2): 621- 637.
|
24 |
LÓPEZ-MONROY A P, ALDANA D V, MIRANDA A A E, et al. Deep learning for language and vision tasks in surveillance applications. Computacion y Sistemas, 2021, 25(2): 317- 328.
|
25 |
ASADI N, OLSON I R, OBRADOVIC Z. The backbone network of dynamic functional connectivity. Network Neuroscience, 2021, 5(4): 851- 873.
|