1 |
|
2 |
ZHOU A M, QU B Y, LI H, et al. Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm and Evolutionary Computation, 2011, 1 (1): 32- 49.
doi: 10.1016/j.swevo.2011.03.001
|
3 |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017
|
4 |
ZHANG Q F, LI H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11 (6): 712- 731.
doi: 10.1109/TEVC.2007.892759
|
5 |
张景成, 戴光明. 基于指标的多目标进化算法研究. 计算机工程, 2009, 35 (23): 187-189, 193
URL
|
|
ZHANG J C, DAI G M. Research on indicator-based multi-objective evolutionary algorithm. Computer Engineering, 2009, 35 (23): 187-189, 193
URL
|
6 |
GUPTA A, ONG Y S, FENG L. Multifactorial evolution: toward evolutionary multitasking. IEEE Transactions on Evolutionary Computation, 2016, 20 (3): 343- 357.
doi: 10.1109/TEVC.2015.2458037
|
7 |
LIANG Z P, LIANG W Q, XU X J, et al. A two stage adaptive knowledge transfer evolutionary multi-tasking based on population distribution for multi/many-objective optimization[EB/OL]. [2022-11-12]. https://arxiv.org/abs/2001.00810v1.
|
8 |
GUPTA A, ONG Y S, FENG L, et al. Multiobjective multifactorial optimization in evolutionary multitasking. IEEE Transactions on Cybernetics, 2017, 47 (7): 1652- 1665.
doi: 10.1109/TCYB.2016.2554622
|
9 |
HUANG S J, ZHONG J H, YU W J. Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization. IEEE Transactions on Emerging Topics in Computing, 2021, 9 (4): 1930- 1944.
doi: 10.1109/TETC.2019.2945775
|
10 |
邱鸿辉, 刘海林, 陈磊. 基于协方差矩阵调整的多目标多任务优化算法. 计算机工程, 2022, 48 (8): 306- 312.
doi: 10.19678/j.issn.1000-3428.0062365
|
|
QIU H H, LIU H L, CHEN L. Multi-objective multi-tasking optimization algorithm based on adjustment of covariance matrix. Computer Engineering, 2022, 48 (8): 306- 312.
doi: 10.19678/j.issn.1000-3428.0062365
|
11 |
TANG J, CHEN Y K, DENG Z X, et al. A group-based approach to improve multifactorial evolutionary algorithm[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. New York, USA: ACM Press, 2018: 3870-3876.
|
12 |
ZHANG J, ZHOU W E, CHEN X Q, et al. Multisource selective transfer framework in multiobjective optimization problems. IEEE Transactions on Evolutionary Computation, 2020, 24 (3): 424- 438.
doi: 10.1109/TEVC.2019.2926107
|
13 |
BALI K K, ONG Y S, GUPTA A, et al. Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2020, 24 (1): 69- 83.
doi: 10.1109/TEVC.2019.2906927
|
14 |
THANH BINH H T, QUOC TUAN N, THANH LONG D C. A multi-objective multi-factorial evolutionary algorithm with reference-point-based approach[C]//Proceedings of Congress on Evolutionary Computation. Washington D. C., USA: IEEE Press, 2019: 2824-2831.
|
15 |
田红军, 汪镭, 吴启迪. 一种求解多目标优化问题的进化算法混合框架. 控制与决策, 2017, 32 (10): 1729- 1738.
URL
|
|
TIAN H J, WANG L, WU Q D. A hybrid framework of evolutionary algorithm for solving multi-objective optimization problems. Control and Decision, 2017, 32 (10): 1729- 1738.
URL
|
16 |
ZHOU A M, ZHANG Q F. Are all the subproblems equally important? resource allocation in decomposition-based multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 2016, 20 (1): 52- 64.
doi: 10.1109/TEVC.2015.2424251
|
17 |
WANG X P, DONG Z M, TANG L X, et al. Multiobjective multitask optimization-neighborhood as a bridge for knowledge transfer. IEEE Transactions on Evolutionary Computation, 2023, 27 (1): 155- 169.
doi: 10.1109/TEVC.2022.3154416
|
18 |
BLANK J, DEB K, DHEBAR Y, et al. Generating well-spaced points on a unit simplex for evolutionary many-objective optimization. IEEE Transactions on Evolutionary Computation, 2021, 25 (1): 48- 60.
doi: 10.1109/TEVC.2020.2992387
|
19 |
MARDLE S, MIETTINEN K M. Nonlinear multiobjective optimization. The Journal of the Operational Research Society, 2000, 51 (2): 246.
doi: 10.1007/978-1-4615-5563-6
|
20 |
LIANG R H. Application of grey relation analysis to hydroelectric generation scheduling. International Journal of Electrical Power & Energy Systems, 1999, 21 (5): 357- 364.
doi: 10.1016/S0142-0615(98)00055-6
|
21 |
|
22 |
STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11 (4): 341- 359.
doi: 10.1023/A:1008202821328
|
23 |
DEB K, TIWARI S. Omni-optimizer: a generic evolutionary algorithm for single and multi-objective optimization. European Journal of Operational Research, 2008, 185 (3): 1062- 1087.
doi: 10.1016/j.ejor.2006.06.042
|
24 |
YUAN Y, ONG Y S, FENG L, et al. Evolutionary multitasking for multiobjective continuous optimization: benchmark problems, performance metrics and baseline results[EB/OL]. [2022-11-12]. https://arxiv.org/pdf/1706.02766.pdf.
|
25 |
ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation, 2003, 7 (2): 117- 132.
URL
|
26 |
EMMERICH M, BEUME N, NAUJOKS B. An EMO algorithm using the hypervolume measure as selection criterion[C]//Proceedings of the 3rd International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Germany: Springer, 2005: 62-76.
|