[1] MOLINA D, LATORRE A, HERRERA F.An insight into bio-inspired and evolutionary algorithms for global optimization:review, analysis, and lessons learnt over a decade of competitions[J].Cognitive Computation, 2018, 10(4):517-544. [2] DANTZIG G B, THAPA M N.Linear programming 1:introduction[M].Berlin, Germany:Springer, 2006. [3] BAZARAA M S, SHERALI H D, SHETTY C M.Nonlinear programming[M].Hoboken, USA:John Wiley & Sons, Inc., 2005. [4] BUBECK S.Convex optimization:algorithms and complexity[J].Foundations and Trends in Machine Learning, 2015, 8(3/4):231-357. [5] LIN M H, TSAI J F, YU C S.A review of deterministic optimization methods in engineering and management[J].Mathematical Problems in Engineering, 2012(6):1-15. [6] KUMAR M, HUSAIN M, UPRETI N, et al.Genetic algorithm:review and application[EB/OL].[2022-04-13].https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3529843. [7] CHAKRABORTY, UDAY K.Advances in differential evolution[M].Berlin, Germany:Springer, 2008. [8] 魏德宾, 刘健, 潘成胜, 等.卫星网络中基于多QoS约束的蚁群优化路由算法[J].计算机工程, 2019, 45(7):114-120. WEI D B, LIU J, PAN C S, et al.Ant colony optimization routing algorithm based on multi-QoS constraints in satellite networks[J].Computer Engineering, 2019, 45(7):114-120.(in Chinese) [9] KIZIELEWICZ B, SAŁABUN W.A new approach to identifying a multi-criteria decision model based on stochastic optimization techniques[J].Symmetry, 2020, 12(9):1551. [10] BARATI H, SADEGHI M.An efficient hybrid MPSO-GA algorithm for solving non-smooth/non-convex economic dispatch problem with practical constraints[J].Ain Shams Engineering Journal, 2018, 9(4):1279-1287. [11] ELLOUMI W, EL ABED H, ABRAHAM A, et al.A comparative study of the improvement of performance using a PSO modified by ACO applied to TSP[J].Applied Soft Computing, 2014, 25:234-241. [12] FALLAH M, TAVAKKOLI-MOGHADDAM R.A robust approach for a green periodic competitive VRP under uncertainty:DE and PSO algorithms[J].Journal of Intelligent & Fuzzy Systems, 2019, 36(6):5213-5225. [13] TIAN Y, ZHANG X Y, WANG C, et al.An evolutionary algorithm for large-scale sparse multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation, 2020, 24(2):380-393. [14] SALIH S Q, ALSEWARI A A.A new algorithm for normal and large-scale optimization problems:nomadic people optimizer[J].Neural Computing and Applications, 2020, 32(14):10359-10386. [15] BACK T, HAMMEL U, SCHWEFEL H P.Evolutionary computation:comments on the history and current state[J].IEEE transactions on Evolutionary Computation, 1997, 1(1):3-17. [16] TANABE R, ISHIBUCHI H.A review of evolutionary multimodal multiobjective optimization[J].IEEE Transactions on Evolutionary Computation, 2020, 24(1):193-200. [17] 代瑞瑞, 马永杰, 摆玉龙, 等.基于动态模式搜索的差分进化算法[J].计算机工程, 2016, 42(9):163-167. DAI R R, MA Y J, BAI Y L, et al.Differential evolution algorithm based on dynamic pattern search[J].Computer Engineering, 2016, 42(9):163-167.(in Chinese) [18] BENNIS F, BHATTACHARJYA R K.Nature-inspired methods for metaheuristics optimization[M].Berlin, Germany:Springer, 2020. [19] MIRJALILI S, DONG J S, LEWIS A.Nature-inspired optimizers[M].Berlin, Germany:Springer, 2020. [20] ONG Y S, GUPTA A.Evolutionary multitasking:a computer science view of cognitive multitasking[J].Cognitive Computation, 2016, 8(2):125-142. [21] GUPTA A, ONG Y S, FENG L.Insights on transfer optimization:because experience is the best teacher[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1):51-64. [22] XU Q Z, WANG N, WANG L, et al.Multi-task optimization and multi-task evolutionary computation in the past five years:a brief review[J].Mathematics, 2021, 9(8):864. [23] TORREY L, SHAVLIK J.Transfer learning[M].Hershey, USA:IGI Global, 2010. [24] SFERRAZZA C, D'ANDREA R.Transfer learning for vision-based tactile sensing[C]//Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Washington D.C., USA:IEEE Press, 2019:7961-7967. [25] THUY M B H, HOANG V T.Fusing of deep learning, transfer learning and GAN for breast cancer histopathological image classification[M].Berlin, Germany:Springer, 2020. [26] SHAO S Y, MCALEER S, YAN R Q, et al.Highly accurate machine fault diagnosis using deep transfer learning[J].IEEE Transactions on Industrial Informatics, 2019, 15(4):2446-2455. [27] TAN K C, FENG L, JIANG M.Evolutionary transfer optimization-a new frontier in evolutionary computation research[J].IEEE Computational Intelligence Magazine, 2021, 16(1):22-33. [28] WEI T Y, WANG S B, ZHONG J H, et al.A review on evolutionary multitask optimization:trends and challenges[J].IEEE Transactions on Evolutionary Computation, 2022, 26(5):941-960. [29] OSABA E, DEL SER J, MARTINEZ A D, et al.Evolutionary multitask optimization:a methodological overview, challenges, and future research directions[J].Cognitive Computation, 2022, 14(3):927-954. [30] XUE X M, YANG C E, HU Y, et al.Evolutionary sequential transfer optimization for objective-heterogeneous problems[J].IEEE Transactions on Evolutionary Computation, 2022, 26(6):1424-1438. [31] GUPTA A, ONG Y S.Genetic transfer or population diversification?Deciphering the secret ingredients of evolutionary multitask optimization[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2016:1-7. [32] DA B S, GUPTA A, ONG Y S, et al.Evolutionary multitasking across single and multi-objective formulations for improved problem solving[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2016:1695-1701. [33] GUPTA A, ONG Y S, FENG L.Multifactorial evolution:toward evolutionary multitasking[J].IEEE Transactions on Evolutionary Computation, 2016, 20(3):343-357. [34] LIAW R T, TING C K.Evolutionary many-tasking based on biocoenosis through symbiosis:a framework and benchmark problems[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2017:2266-2273. [35] LIANG Z P, LIANG W Q, WANG Z Q, et al.Multiobjective evolutionary multitasking with two-stage adaptive knowledge transfer based on population distribution[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2022, 52(7):4457-4469. [36] 董浩.多目标多任务进化算法研究及其在边缘计算服务部署中的应用[D].深圳:深圳大学, 2020. DONG H.Research on multi-objective multi task evolutionary algorithm and its application in service deployment of edge computing[D].Shenzhen:Shenzhen University, 2020.(in Chinese) [37] 张勇, 杨康, 郝国生, 等.基于相似历史信息迁移学习的进化优化框架[J].自动化学报, 2021, 47(3):652-665. ZHANG Y, YANG K, HAO G S, et al.Evolutionary optimization framework based on transfer learning of similar historical information[J].Acta Automatica Sinica, 2021, 47(3):652-665.(in Chinese) [38] DA B S, GUPTA A, ONG Y S.Curbing negative influences online for seamless transfer evolutionary optimization[J].IEEE Transactions on Cybernetics, 2019, 49(12):4365-4378. [39] YI J, BAI J R, HE H B, et al.A multifactorial evolutionary algorithm for multitasking under interval uncertainties[J].IEEE Transactions on Evolutionary Computation, 2020, 24(5):908-922. [40] SHANG Q, ZHANG L, FENG L, et al.A preliminary study of adaptive task selection in explicit evolutionary many-tasking[C]//Proceedings of 2019 IEEE Congress on Evolutionary Computation(CEC).Washington D.C., USA:IEEE Press, 2019:2153-2159. [41] HUANG S J, ZHONG J H, YU W J.Surrogate-assisted evolutionary framework with adaptive knowledge transfer for multi-task optimization[J].IEEE Transactions on Emerging Topics in Computing, 2021, 9(4):1930-1944. [42] CHEN Y L, ZHONG J H, FENG L, et al.An adaptive archive-based evolutionary framework for many-task optimization[J].IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4(3):369-384. [43] HATZAKIS I, WALLACE D.Dynamic multi-objective optimization with evolutionary algorithms:a forward-looking approach[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation.Washington D.C., USA:IEEE Press, 2006:1201-1208. [44] WANG Z Z, JIANG M, GAO X, et al.Evolutionary dynamic multi-objective optimization via regression transfer learning[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2019:2375-2381. [45] JIANG M, WANG Z Z, QIU L M, et al.A fast dynamic evolutionary multiobjective algorithm via manifold transfer learning[J].IEEE Transactions on Cybernetics, 2021, 51(7):3417-3428. [46] JIANG M, WANG Z Z, HONG H K, et al.Knee point-based imbalanced transfer learning for dynamic multiobjective optimization[J].IEEE Transactions on Evolutionary Computation, 2021, 25(1):117-129. [47] JIANG M, WANG Z Z, GUO S H, et al.Individual-based transfer learning for dynamic multiobjective optimization[J].IEEE Transactions on Cybernetics, 2021, 51(10):4968-4981. [48] JIANG M, HUANG Z Q, QIU L M, et al.Transfer learning-based dynamic multiobjective optimization algorithms[J].IEEE Transactions on Evolutionary Computation, 2018, 22(4):501-514. [49] ZHOU L, FENG L, GUPTA A, et al.Solving dynamic vehicle routing problem via evolutionary search with learning capability[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2017:890-896. [50] ZHANG F F, MEI Y, NGUYEN S, et al.Multitask genetic programming-based generative hyperheuristics:a case study in dynamic scheduling[J].IEEE Transactions on Cybernetics, 2022, 52(10):10515-10528. [51] FENG L, ONG Y S, LIM M H, et al.Memetic search with interdomain learning:a realization between CVRP and CARP[J].IEEE Transactions on Evolutionary Computation, 2015, 19(5):644-658. [52] FENG L, ONG Y S, TAN A H, et al.Memes as building blocks:a case study on evolutionary optimization + transfer learning for routing problems[J].Memetic Computing, 2015, 7(3):159-180. [53] KNOWLES J D, WATSON R A, CORNE D.Reducing local optima in single-objective problems by multi-objectivization[C]//Proceedings of the 1st International Conference on Evolutionary Multi-Criterion Optimization.Washington D.C., USA:IEEE Press, 2001:269-283. [54] ZHANG L J, XIE Y L, CHEN J J, et al.A study on multiform multi-objective evolutionary optimization[J].Memetic Computing, 2021, 13(3):307-318. [55] YUAN Y, ONG Y S, GUPTA A, et al.Objective reduction in many-objective optimization:evolutionary multiobjective approaches and comprehensive analysis[J].IEEE Transactions on Evolutionary Computation, 2018, 22(2):189-210. [56] SANTANA R, MENDIBURU A, LOZANO J A.Structural transfer using EDAs:an application to multi-marker tagging SNP selection[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2012:1-8. [57] HUANG Z X, CHEN Z F, ZHOU Y R.Analysis on the efficiency of multifactorial evolutionary algorithms[M].Berlin, Germany:Springer, 2020. [58] LI G H, LIN Q Z, GAO W F.Multifactorial optimization via explicit multipopulation evolutionary framework[J].Information Sciences, 2020, 512:1555-1570. [59] ZHOU L, FENG L, TAN K C, et al.Toward adaptive knowledge transfer in multifactorial evolutionary computation[J].IEEE Transactions on Cybernetics, 2021, 51(5):2563-2576. [60] FENG L, ONG Y S, JIANG S W, et al.Autoencoding evolutionary search with learning across heterogeneous problems[J].IEEE Transactions on Evolutionary Computation, 2017, 21(5):760-772. [61] RUAN G, MINKU L L, MENZEL S, et al.When and how to transfer knowledge in dynamic multi-objective optimization[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2019:2034-2041. [62] DING J L, YANG C E, JIN Y C, et al.Generalized multitasking for evolutionary optimization of expensive problems[J].IEEE Transactions on Evolutionary Computation, 2019, 23(1):44-58. [63] BALI K K, GUPTA A, FENG L, et al.Linearized domain adaptation in evolutionary multitasking[C]//Proceedings of 2017 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2017:1295-1302. [64] NAZIF H, LEE L S.Optimised crossover genetic algorithm for capacitated vehicle routing problem[J].Applied Mathematical Modelling, 2012, 36(5):2110-2117. [65] OCHOA G, WALKER J, HYDE M, et al.Adaptive evolutionary algorithms and extensions to the HyFlex hyper-heuristic framework[M].Berlin, Germany:Springer, 2012. [66] CARRANO E G, FONSECA C M, TAKAHASHI R H C, et al.A preliminary comparison of tree encoding schemes for evolutionary algorithms[C]//Proceedings of IEEE International Conference on Systems, Man and Cybernetics.Washington D.C., USA:IEEE Press, 2007:1969-1974. [67] MIN A T W, ONG Y S, GUPTA A, et al.Multiproblem surrogates:transfer evolutionary multiobjective optimization of computationally expensive problems[J].IEEE Transactions on Evolutionary Computation, 2019, 23(1):15-28. [68] KNOWLES J.ParEGO:a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation, 2006, 10(1):50-66. [69] LIU D N, HUANG S J, ZHONG J H.Surrogate-assisted multi-tasking memetic algorithm[C]//Proceedings of 2018 IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2018:1-8. [70] LIANG Z P, ZHANG J, FENG L, et al.A hybrid of genetic transform and hyper-rectangle search strategies for evolutionary multi-tasking[J].Expert Systems with Applications, 2019, 138:112798. [71] ZHANG F F, MEI Y, NGUYEN S, et al.Surrogate-assisted evolutionary multitask genetic programming for dynamic flexible job shop scheduling[J].IEEE Transactions on Evolutionary Computation, 2021, 25(4):651-665. [72] CHAABANI A, SAID L B.Transfer of learning with the co-evolutionary decomposition-based algorithm-II:a realization on the bi-level production-distribution planning system[J].Applied Intelligence, 2019, 49(3):963-982. [73] CHAABANI A, BECHIKH S, SAID L B, et al.An improved co-evolutionary decomposition-based algorithm for bi-level combinatorial optimization[C]//Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation.Washington D.C., USA:IEEE Press, 2015:1363-1364. [74] JIN C, TSAI P W, QIN A K.A study on knowledge reuse strategies in multitasking differential evolution[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2019:1564-1571. [75] TUAN N Q, HOANG T D, THANH BINH H T.A guided differential evolutionary multi-tasking with powell search method for solving multi-objective continuous optimization[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2018:1-8. [76] FENG L, ZHOU W, ZHOU L, et al.An empirical study of multifactorial PSO and multifactorial DE[C]//Proceedings of IEEE Congress on Evolutionary Computation.Washington D.C., USA:IEEE Press, 2017:921-928. [77] CHEN Y L, ZHONG J H, TAN M K.A fast memetic multi-objective differential evolution for multi-tasking optimization[C]//Proceedings of 2018 IEEE Congress on Evolutionary Computation(CEC).Washington D.C., USA:IEEE Press, 2018:1-8. [78] WEN Y W, TING C K.Parting ways and reallocating resources in evolutionary multitasking[C]//Proceedings of 2017 IEEE Congress on Evolutionary Computation(CEC).Washington D.C., USA:IEEE Press, 2017:2404-2411. [79] GONG M G, TANG Z D, LI H, et al.Evolutionary multitasking with dynamic resource allocating strategy[J].IEEE Transactions on Evolutionary Computation, 2019, 23(5):858-869. [80] YAO S S, DONG Z M, WANG X P, et al.A multiobjective multifactorial optimization algorithm based on decomposition and dynamic resource allocation strategy[J].Information Sciences, 2020, 511:18-35. [81] GUPTA A, ONG Y S, FENG L, et al.Multiobjective multifactorial optimization in evolutionary multitasking[J].IEEE Transactions on Cybernetics, 2017, 47(7):1652-1665. [82] WU Z, WU J J, ZHAO M B, et al.Two-layered ant colony system to improve engraving robot's efficiency based on a large-scale TSP model[J].Neural Computing and Applications, 2021, 33(12):6939-6949. [83] 项小书.求解不确定环境下两类物流规划问题的进化算法研究[D].合肥:安徽大学, 2020. XIANG X S.Research on evolutionary algorithms for solving two logistics planning problems under uncertainty[D].Hefei:Anhui University, 2020.(in Chinese) [84] 马华伟, 马凯, 郭君.考虑多投递的带无人机车辆路径规划问题研究[J].计算机工程, 2022, 48(8):299-305. MA H W, MA K, GUO J.Research on vehicle routing problem with drones considering multi-delivery[J]. Computer Engineering, 2022, 48(8):299-305.(in Chinese) [85] TAN L Z, TAN Y Y, YUN G X, et al.An improved genetic algorithm based on k-means clustering for solving traveling salesman problem[C]//Proceedings of Conference on Computer Science, Technology and Application.Changsha, China:World Scientific, 2016:334-343. [86] CHEN J F, WANG Y H, XUE X S, et al.Cooperative co-evolutionary metaheuristics for solving large-scale TSP art project[C]//Proceedings of IEEE Symposium Series on Computational Intelligence.Washington D.C., USA:IEEE Press, 2017:2706-2713. [87] DENG W, SHANG S F, CAI X, et al.Quantum differential evolution with cooperative coevolution framework and hybrid mutation strategy for large scale optimization[J].Knowledge-Based Systems, 2021, 224:107080. [88] YUAN Y, ONG Y S, FENG L, et al.Evolutionary multitasking for multiobjective continuous optimization:benchmark problems, performance metrics and baseline results[EB/OL].[2022-04-13].https://arxiv.org/abs/1706.02766. [89] XU Z W, LIU X M, ZHANG K, et al.Cultural transmission based multi-objective evolution strategy for evolutionary multitasking[J].Information Sciences, 2022, 582:215-242. [90] MIN A T W, SAGARNA R, GUPTA A, et al.Knowledge transfer through machine learning in aircraft design[J].IEEE Computational Intelligence Magazine, 2017, 12(4):48-60. [91] OSABA E, MARTINEZ A D, GALVEZ A, et al.dMFEA-II:an adaptive multifactorial evolutionary algorithm for permutation-based discrete optimization problems[C]//Proceedings of 2020 Genetic and Evolutionary Computation Conference Companion.Washington D.C., USA:IEEE Press, 2020:1690-1696. [92] BALI K K, ONG Y S, GUPTA A, et al.Multifactorial evolutionary algorithm with online transfer parameter estimation:MFEA-II[J].IEEE Transactions on Evolutionary Computation, 2020, 24(1):69-83. |