作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2023, Vol. 49 ›› Issue (1): 1-14. doi: 10.19678/j.issn.1000-3428.0064756

• 热点与综述 • 上一篇    下一篇

进化迁移优化算法综述

伍洲1, 杨寒石1, 邬俊俊1, 张海军2, 宋晴3   

  1. 1. 重庆大学 自动化学院, 重庆 400044;
    2. 哈尔滨工业大学(深圳) 计算机科学与技术学院, 广东 深圳 518055;
    3. 北京邮电大学 人工智能学院, 北京 100876
  • 收稿日期:2022-05-19 修回日期:2022-07-07 发布日期:2022-07-25
  • 作者简介:伍洲(1985-),男,教授、博士,主研方向为智能优化算法;杨寒石、邬俊俊,硕士研究生;张海军、宋晴,教授、博士。
  • 基金资助:
    国家自然科学基金(52178271);国家重点研发计划(2022YFE0198900,2021YFF0500903)。

Survey of Evolutionary Transfer Optimization Algorithms

WU Zhou1, YANG Hanshi1, WU Junjun1, ZHANG Haijun2, SONG Qing3   

  1. 1. College of Automation, Chongqing University, Chongqing 400044, China;
    2. College of Computer Science and Technology, Harbin Institute of Technology(Shenzhen), Shenzhen, Guangdong 518055, China;
    3. College of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2022-05-19 Revised:2022-07-07 Published:2022-07-25

摘要: 进化算法是模拟自然界生物进化的启发式算法,具有良好的搜索能力和灵活性且广泛用于复杂优化问题的求解,但在求解过程中默认问题先验知识为零,然而由于问题很少孤立存在,解决单一任务积累的经验可迁移至其他相关任务。进化迁移优化算法利用相关领域的知识学习和迁移,实现了更好的优化效率和性能。介绍进化迁移优化算法的基本分类,从源任务选择、知识迁移、缩小搜索空间差异、进化算法搜索、进化资源分配等5个角度出发对主流进化迁移优化算法的核心策略和优劣势进行梳理和分析。通过中国知网和WOS平台对2014年至2021年的进化迁移优化相关文献进行检索,运用知识图谱进行数据挖掘、信息处理、知识计量和图形绘制,根据进化迁移优化的发展趋势和经验分析总结了其面临的主要挑战和未来研究方向。

关键词: 进化算法, 进化迁移优化, 进化多任务优化, 知识迁移, 迁移学习

Abstract: Evolutionary Algorithm(EA) are heuristic algorithms that simulate natural biological evolution and exhibit good searchability and flexibility.They have been successfully applied to solve complex optimization problems. However, while solving the problem, EA default the prior knowledge to zero.However, as target problems seldom exist in isolation, experience gained from a task can be transferred to other related tasks.Evolutionary Transfer Optimization(ETO) algorithms utilize knowledge learning and transferring in related fields to achieve improved optimization efficiency and performance.This study introduces a basic classification of ETO algorithms.The core strategies, advantages, and disadvantages of the mainstream ETO algorithms are sorted out and analyzed from five perspectives:source task selection, knowledge transfer, narrowing the search space difference, evolutionary algorithm search, and evolutionary resource allocation.Relevant papers on ETO published from 2014 to 2021 are retrieved through the China National Knowledge Infrastructure(CNKI) and Web of Science(WOS).The knowledge graph is used for data mining, information processing, knowledge measurements, and graph drawing.Based on the development trend of ETO and experience, the main challenges and future research directions are summarized.

Key words: Evolutionary Algorithm(EA), Evolutionary Transfer Optimization(ETO), Evolutionary Multitask Optimization(EMTO), knowledge transfer, Transfer Learning(TL)

中图分类号: