1 |
WANG C R, YAN C X, LIU Z C. Leader-following consensus for second-order nonlinear multi-agent systems under Markovian switching topologies with application to ship course-keeping. International Journal of Control, Automation and Systems, 2021, 19(1): 54- 62.
doi: 10.1007/s12555-019-0395-8
|
2 |
WANG Y W, WEI Y W, LIU X K, et al. Optimal persistent monitoring using second-order agents with physical constraints. IEEE Transactions on Automatic Control, 2019, 64(8): 3239- 3252.
doi: 10.1109/TAC.2018.2879946
|
3 |
|
4 |
ZHOU X, WEN X Y, WANG Z P, et al. Swarm of micro flying robots in the wild. Science Robotics, 2022, 7(66): eabm5954.
doi: 10.1126/scirobotics.abm5954
|
5 |
HOFFMAN G. Evaluating fluency in human-robot collaboration. IEEE Transactions on Human-Machine Systems, 2019, 49(3): 209- 218.
doi: 10.1109/THMS.2019.2904558
|
6 |
ZHI H, CHEN L M, LI C J, et al. Leader-follower affine formation control of second-order nonlinear uncertain multi-agent systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(12): 3547- 3551.
doi: 10.1109/TCSII.2021.3072652
|
7 |
YU J L, DONG X W, LI Q D, et al. Practical time-varying formation tracking for second-order nonlinear multiagent systems with multiple leaders using adaptive neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6015- 6025.
doi: 10.1109/TNNLS.2018.2817880
|
8 |
MENG D Y, JIA Y M, DU J P, et al. On iterative learning algorithms for the formation control of nonlinear multi-agent systems. Automatica, 2014, 50(1): 291- 295.
doi: 10.1016/j.automatica.2013.11.009
|
9 |
WANG J L, WU H N. Leader-following formation control of multi-agent systems under fixed and switching topologies. International Journal of Control, 2012, 85(6): 695- 705.
doi: 10.1080/00207179.2012.662720
|
10 |
WANG M, ZHANG T. Leader-following formation control of second-order nonlinear systems with time-varying communication delay. International Journal of Control, Automation and Systems, 2021, 19(5): 1729- 1739.
doi: 10.1007/s12555-019-0759-0
|
11 |
SHANG Y L. Consensus seeking over Markovian switching networks with time-varying delays and uncertain topologies. Applied Mathematics and Computation, 2016, 273, 1234- 1245.
doi: 10.1016/j.amc.2015.08.115
|
12 |
MO L P, GUO S Y, YU Y G. Mean-square consensus of heterogeneous multi-agent systems with nonconvex constraints, Markovian switching topologies and delays. Neurocomputing, 2018, 291, 167- 174.
doi: 10.1016/j.neucom.2018.02.075
|
13 |
XIE D M, SHI L, JIANG F C. Group tracking control of second-order multi-agent systems with fixed and Markovian switching topologies. Neurocomputing, 2018, 281, 37- 46.
doi: 10.1016/j.neucom.2017.11.040
|
14 |
LI F, SHEN H. Finite-time H∞ synchronization control for semi-Markov jump delayed neural networks with randomly occurring uncertainties. Neurocomputing, 2015, 166, 447- 454.
doi: 10.1016/j.neucom.2015.03.034
|
15 |
SUN F L, LEI C Y, KURTHS J. Consensus of heterogeneous discrete-time multi-agent systems with noise over Markov switching topologies. International Journal of Robust and Nonlinear Control, 2021, 31(5): 1530- 1541.
doi: 10.1002/rnc.5360
|
16 |
YE D, CHEN M M, YANG H J. Distributed adaptive event-triggered fault-tolerant consensus of multiagent systems with general linear dynamics. IEEE Transactions on Cybernetics, 2019, 49(3): 757- 767.
doi: 10.1109/TCYB.2017.2782731
|
17 |
GONG P, LAN W Y, HAN Q L. Robust adaptive fault-tolerant consensus control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica, 2020, 117, 109011.
doi: 10.1016/j.automatica.2020.109011
|
18 |
DAI J T, GUO G. Exponential consensus of non-linear multi-agent systems with semi-Markov switching topologies. IET Control Theory & Applications, 2017, 11(18): 3363- 3371.
URL
|
19 |
LIU H W, KARIMI H R, DU S L, et al. Leader-following consensus of discrete-time multiagent systems with time-varying delay based on large delay theory. Information Sciences, 2017, 417, 236- 246.
doi: 10.1016/j.ins.2017.07.014
|
20 |
SU X J, SHI P, WU L G, et al. Fault detection filtering for nonlinear switched stochastic systems. IEEE Transactions on Automatic Control, 2016, 61(5): 1310- 1315.
doi: 10.1109/TAC.2015.2465091
|
21 |
PARK P, KO J W, JEONG C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica, 2011, 47(1): 235- 238.
doi: 10.1016/j.automatica.2010.10.014
|
22 |
FRAGOSO M D, COSTA O L V. A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbances. SIAM Journal on Control and Optimization, 2005, 44(4): 1165- 1191.
doi: 10.1137/S0363012903434753
|
23 |
LI Z K, WEN G H, DUAN Z S, et al. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Transactions on Automatic Control, 2015, 60(4): 1152- 1157.
doi: 10.1109/TAC.2014.2350391
|
24 |
OGATA K. Modern control engineering. 5th ed Boston, USA: Prentice Hall, 2010.
|
25 |
MAO X. Robustness of exponential stability of stochastic differential delay equations. IEEE Transactions on Automatic Control, 1996, 41(3): 442- 447.
doi: 10.1109/9.486647
|