[1]ZHENG V W,CAVALLARI S,CAI H,et al.From node embedding to community embedding[EB/OL].[2017-09-10].https://www.researchgate.net/publication/3095726 90_From_Node_Embedding_To_Community_Embedding.
[2]MIKOLOVB T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].[2017-09-10].http://ling.snu.ac.kr/class/AI_Agent/ lecture/ 07-3-EfficientEstimationofWordRepresentationinVec- torSpace.pdf.
[3]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distri-buted representations of words and phrases and their compositionality[C]//Proceedings of International Con-ference on Neural Information Processing Systems.[S.l.]:Curran Associates Inc.,2013:3111-3119.
[4]MIKOLOV T,YIH W T,ZWEIG G.Linguistic regularities in continuous space word representations[C]//Proceedings of 2013 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.[S.l.]:Association for Computational Linguistics,2013:746-751.
[5]SUN F,GUO J,LAN Y,et al.Sparse word embeddings using l1 regularized online learning[C]//Proceedings of International Joint Conference on Artificial Intelligence.[S.l.]:AAAI Press,2016:2915-2921.
[6]TANG L,LIU H.Leveraging social media networks for classification[J].Data Mining and Knowledge Discovery,2011,23(3):447-478.
[7]YAN S,XU D,ZHANG B,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-48.
[8]BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniques for embedding and clustering[J].Advances in Neural Information Processing Systems,2002,14(6):585-591.
[9]GALLAGHER B,ELIASSIRAD T.Leveraging label-independent features for classification in sparsely labeled networks:an empirical study[C]//Proceedings of International Conference on Advances in Social Network Mining and Analysis.Berlin,Germany:Springer,2008:1-19.
[10]PEROZZI B,ALRFOU R,SKIENA S.DeepWalk:online learning of social representations[EB/OL].[2017-09-10].http://www.perozzi.net/publications/14_kdd_deepwalk-slides.pdf.
[11]TANG J,QU M,WANG M,et al.LINE:large-scale information network embedding[C]//Proceedings of International World Wide Web Conferences Steering Committee.New York,USA:ACM Press,2015:1067-1077.
[12]GROVER A,LESKOVEC J.node2vec:scalable feature learning for networks[C]//Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:855-864.
[13]WANG D,CUI P,ZHU W.Structural deep network embedding[C]//Proceedings of ACM SIGKDD Interna-tional Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2016:1225-1234.
[14]蔡波斯,陈翔.基于行为相似度的微博社区发现研究[J].计算机工程,2013,39(8):55-59.
[15]CAO S S,LU W,XU Q K.GreRep:learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management.New York,USA:ACM Press,2015:891-906.
[16]何静,潘善亮,韩露.基于双边兴趣的社交网好友推荐方法研究[J].计算机工程与应用,2015,51(6):108-113.
[17]周芝民,龙华,杜庆志,等.基于连通性和随机游走的好友推荐算法[J].信息技术,2016(8):67-70.
[18]张中军,张文娟,于来行,等.基于网络距离和内容相似度的微博社交网络社区划分方法[J].山东大学学报(理学版),2017,52(7):97-103.
[19]YANG C,ZHAO D,ZHAO D,et al.Network represen-tation learning with rich text information[C]//Proceedings of International Conference on Artificial Intelligence.[S.l.]:AAAI Press,2015:2111-2117. |