作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (3): 44-51. doi: 10.19678/j.issn.1000-3428.0067597

• 热点与综述 • 上一篇    下一篇

基于灰度图谱分析的IP软核硬件木马检测方法

倪林1,2, 刘子辉2, 张帅2,*(), 韩久江1, 鲜明1   

  1. 1. 国防科技大学电子科学学院, 湖南 长沙 410073
    2. 国防科技大学信息通信学院, 湖北 武汉 430030
  • 收稿日期:2023-05-10 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 张帅

IP Soft Core Hardware Trojan Detection Method Based on Grayscale Graph Analysis

Lin NI1,2, Zihui LIU2, Shuai ZHANG2,*(), Jiujiang HAN1, Ming XIAN1   

  1. 1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, Hunan, China
    2. College of Information and Communication, National University of Defense Technology, Wuhan 430030, Hubei, China
  • Received:2023-05-10 Online:2024-03-15 Published:2024-03-13
  • Contact: Shuai ZHANG

摘要:

随着芯片设计、制造、封装等流程的分工细化,利用第三方知识产权(IP)软核进行二次开发可以明显提升设计效率,减少重复工作。但是大量非自主可控IP软核被用于加速设计时,可能导致芯片在设计阶段被植入硬件木马,使得芯片安全性难以保证。当前IP软核安全检测方法主要依赖功能测试、代码覆盖率和翻转率分析,或在语义层面进行关键字匹配,且无法对加密IP软核进行检测。在分析硬件木马结构及其在IP软核中实现特征的基础上,利用非可控IP软核与“Golden”IP软核中寄存器传输级(RTL)代码灰度图谱的特征差异,基于Trust-Hub构建“Golden”软核集,提出基于灰度图谱特征的IP软核硬件木马检测模型和算法。以功能篡改型IP软核B19-T100为实验对象,通过调整合适的成像矩阵参数,利用分块匹配对比方式实现硬件木马检测,结果表明,该算法的检测精度达97.18%。在对B19、B15、S38417等5类共18个样本进行测试时,所提算法的平均检测精度达92%以上,表明其可实现对硬件木马的有效识别,检测精度和适用性较强。

关键词: 知识产权软核, 硬件木马, 灰度图谱, 芯片安全, 特征差异

Abstract:

With the refinement of the division of labor in chip design, manufacturing, and packaging processes, the use of third-party Intellectual Property(IP) soft cores for secondary development can significantly improve design efficiency and reduce duplication of work. However, while a large number of non-autonomous controllable IP soft cores are used to accelerate the design, it also puts the chip at risk of being implanted in hardware Trojans in the design stage, and the chip security is difficult to guarantee. Current IP soft core security detection methods mainly rely on functional testing, code coverage, and flip rate analysis, or keyword matching at the semantic level, and cannot detect encrypted IP soft cores. Based on the hardware analysis of the Trojan structure and its implementation features in IP soft cores, this study uses the feature differences between non-controllable IP and "Golden" IP soft cores in Register Transfer Level(RTL) code grayscale maps, and constructs the "Golden" soft core set based on Trust-Hub. Additionally, it proposes a detection model and an algorithm for IP soft hardware Trojans based on grayscale map features. The experiment takes the functional tampering IP soft core B19-T100 as the object, and by adjusting the appropriate imaging matrix parameters, the hardware Trojan detection is realized by block matching and comparison. The detection accuracy of the proposed algorithm is 97.18%. A total of 18 samples of five categories such as B19, B15, and S38417 are tested, and the average detection accuracy is greater than 92%. The results demonstrate that the algorithm can effectively identify the hardware Trojan, and the detection accuracy and applicability are strong.

Key words: Intellectual Property(IP) soft core, hardware Trojan, grayscale graph, chip security, characteristic differences