1 |
DUAN G F, SONG Y G, LIU Z Y, et al. Cross-domain few-shot defect recognition for metal surfaces. Measurement Science and Technology, 2022, 34(1): 015202.
|
2 |
HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement, 2019, 69(4): 1493- 1504.
|
3 |
SAMSUDIN S S, AROF H, HARSUN S W, et al. Steel surface defect classification using multi-resolution empirical mode decomposition and LBP. Measurement Science and Technology, 2020, 32(1): 015601.
|
4 |
刘欢, 刘骁佳, 王宇斐, 等. 基于复合卷积层神经网络结构的焊缝缺陷分类技术. 航空学报, 2022, 43(S1): 165- 172.
URL
|
|
LIU H, LIU X J, WANG Y F, et al. Weld defect classification technology based on compound convolution neural network structure. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 165- 172.
URL
|
5 |
唐泽宇, 邹小虎, 李鹏飞, 等. 基于迁移学习的小样本OFDM目标增强识别方法. 上海交通大学学报, 2022, 56(12): 1666- 1674.
doi: 10.3969/j.issn.1674-8115.2022.12.003
|
|
TANG Z Y, ZOU X H, LI P F, et al. A few-shots OFDM target augmented identification method based on transfer learning. Journal of Shanghai Jiao Tong University, 2022, 56(12): 1666- 1674.
doi: 10.3969/j.issn.1674-8115.2022.12.003
|
6 |
葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述. 软件学报, 2022, 33(1): 193- 210.
URL
|
|
GE Y Z, LIU H, WANG Y, et al. Survey on deep learning image recognition in dilemma of small samples. Journal of Software, 2022, 33(1): 193- 210.
URL
|
7 |
LUO X, XU J, XU Z. Channel importance matters in few-shot image classification[C]//Proceedings of International Conference on Machine Learning. Stroudsburg, USA: Association for Computational Linguistics, 2022: 14542-14559.
|
8 |
SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2017: 4080-4090.
|
9 |
张玲玲, 陈一苇, 吴文俊, 等. 基于对比约束的可解释小样本学习. 计算机研究与发展, 2021, 58(12): 2573- 2584.
doi: 10.7544/issn1000-1239.2021.20210999
|
|
ZHANG L L, CHEN Y W, WU W J, et al. Interpretable few-shot learning with contrastive constraint. Journal of Computer Research and Development, 2021, 58(12): 2573- 2584.
doi: 10.7544/issn1000-1239.2021.20210999
|
10 |
HU S X, LI D, STUHMER J, et al. Pushing the limits of simple pipelines for few-shot learning: external data and fine-tuning make a difference[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 9068-9077.
|
11 |
|
12 |
冯磊, 蒋磊, 许华, 等. 基于深度级联孪生网络的小样本调制识别算法. 计算机工程, 2021, 47(4): 108- 114.
URL
|
|
FENG L, JIANG L, XU H, et al. Small sample modulation recognition algorithm based on depth cascade siamese network. Computer Engineering, 2021, 47(4): 108- 114.
URL
|
13 |
|
14 |
张睿, 杨义鑫, 李阳, 等. 自监督学习下小样本遥感图像场景分类. 中国图象图形学报, 2022, 27(11): 3371- 3381.
doi: 10.11834/jig.210486
|
|
ZHANG R, YANG Y X, LI Y, et al. Self-supervised learning based few-shot remote sensing scene image classification. Journal of Image and Graphics, 2022, 27(11): 3371- 3381.
doi: 10.11834/jig.210486
|
15 |
HE Y, SONG K C, DONG H W, et al. Semi-supervised defect classification of steel surface based on multi-training and generative adversarial network. Optics and Lasers in Engineering, 2019, 122, 294- 302.
doi: 10.1016/j.optlaseng.2019.06.020
|
16 |
李钧正, 殷子玉, 乐心怡. 基于小样本学习的钢板表面缺陷检测技术. 航空科学技术, 2021, 32(6): 65- 70.
URL
|
|
LI J Z, YIN Z Y, LE X Y. Surface defect detection for steel plate with small dataset. Aeronautical Science and Technology, 2021, 32(6): 65- 70.
URL
|
17 |
ZHANG D F, SONG K C, XU J, et al. Unified detection method of aluminum profile surface defects: common and rare defect categories. Optics and Lasers in Engineering, 2020, 126, 105936.
doi: 10.1016/j.optlaseng.2019.105936
|
18 |
|
19 |
LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network. Sensors, 2020, 20(6): 1562.
|
20 |
SONG K C, YAN Y H. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, 2013, 285, 858- 864.
|
21 |
|
22 |
CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[EB/OL]. [2023-04-08]. https://arxiv.org/abs/2002s. 05709v2.
|
23 |
SUN B, LI B H, CAI S C, et al. FSCE: few-shot object detection via contrastive proposal encoding[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 7352-7362.
|
24 |
|
25 |
|