1 |
赵晨曦, 胡敬芳, 宋钰, 等. 影像图中水体识别与提取技术研究综述. 传感器世界, 2022, 28(8): 1- 9.
URL
|
|
ZHAO C X, HU J F, SONG Y, et al. Review of river recognition and extraction techniques in images. Sensor World, 2022, 28(8): 1- 9.
URL
|
2 |
MCFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 1996, 17(7): 1425- 1432.
doi: 10.1080/01431169608948714
|
3 |
XU H Q. Modification of Normalised Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 2006, 27(14): 3025- 3033.
doi: 10.1080/01431160600589179
|
4 |
|
5 |
ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 6230-6239.
|
6 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. [2023-06-05]. http://arxiv.org/abs/1706.05587.
|
7 |
LI X, XU F, XIA R L, et al. Encoding contextual information by interlacing Transformer and convolution for remote sensing imagery semantic segmentation. Remote Sensing, 2022, 14(16): 4065.
doi: 10.3390/rs14164065
|
8 |
LI X, XU F, LIU F, et al. A synergistical attention model for semantic segmentation of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 3243954.
|
9 |
沈骏翱, 马梦婷, 宋致远, 等. 基于深度学习语义分割模型的高分辨率遥感图像水体提取. 自然资源遥感, 2022, 34(4): 129- 135.
URL
|
|
SHEN J A, MA M T, SONG Z Y, et al. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model. Remote Sensing for Natural Resources, 2022, 34(4): 129- 135.
URL
|
10 |
WANG Z B, GAO X, ZHANG Y N, et al. MSLWENet: a novel deep learning network for lake water body extraction of google remote sensing images. Remote Sensing, 2020, 12(24): 4140.
doi: 10.3390/rs12244140
|
11 |
|
12 |
GE C J, XIE W J, MENG L K. Extracting lakes and reservoirs from GF-1 satellite imagery over China using improved U-Net. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3155653.
|
13 |
SUN X, SHI A J, HUANG H, et al. BAS$^{4}$Net: boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5398- 5413.
doi: 10.1109/JSTARS.2020.3021098
|
14 |
ZHENG Y L, YANG M Y, WANG M, et al. Semi-supervised adversarial semantic segmentation network using Transformer and multiscale convolution for high-resolution remote sensing imagery. Remote Sensing, 2022, 14(8): 1786.
doi: 10.3390/rs14081786
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
云飞, 殷雁君, 张文轩, 等. 融合注意力机制的对抗式半监督语义分割. 计算机工程与应用, 2023, 59(8): 254- 262.
URL
|
|
YUN F, YIN Y J, ZHANG W X, et al. Adversarial semi-supervised semantic segmentation with attention mechanism. Computer Engineering and Applications, 2023, 59(8): 254- 262.
URL
|
21 |
MITTAL S, TATARCHENKO M, BROX T. Semi-supervised semantic segmentation with high- and low-level consistency. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1369- 1379.
doi: 10.1109/TPAMI.2019.2960224
|
22 |
|
23 |
祝冰艳, 陈志华, 盛斌. 基于感知增强Swin Transformer的遥感图像检测. 计算机工程, 2024, 50(1): 216- 223.
URL
|
|
ZHU B Y, CHEN Z H, SHENG B. Remote sensing image detection based on perceptually enhanced Swin Transformer. Computer Engineering, 2024, 50(1): 216- 223.
URL
|
24 |
DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. [2023-06-05]. http://arxiv.org/abs/2010.11929.
|
25 |
CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation[EB/OL]. [2023-06-05]. http://arxiv.org/abs/2102.04306.
|
26 |
WANG L B, LI R, WANG D Z, et al. Transformer meets convolution: a bilateral awareness network for semantic segmentation of very fine resolution urban scene images. Remote Sensing, 2021, 13(16): 3065.
doi: 10.3390/rs13163065
|
27 |
TONG X Y, XIA G S, LU Q K, et al. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 2020, 237, 111322.
doi: 10.1016/j.rse.2019.111322
|
28 |
GUO H X, HE G J, JIANG W, et al. A multi-scale water extraction convolutional neural network method for GaoFen-1 remote sensing images. ISPRS International Journal of Geo-Information, 2020, 9(4): 189.
doi: 10.3390/ijgi9040189
|
29 |
WENG L G, XU Y M, XIA M, et al. Water areas segmentation from remote sensing images using a separable residual SegNet network. ISPRS International Journal of Geo-Information, 2020, 9(4): 256.
doi: 10.3390/ijgi9040256
|