1 |
周东明, 张灿龙, 唐艳平, 等. 联合语义分割与注意力机制的行人再识别模型. 计算机工程, 2022, 48 (2): 201- 206.
URL
|
|
ZHOU D M , ZHANG C L , TANG Y P , et al. Pedestrian re-identification model combining semantic segmentation and attention mechanism. Computer Engineering, 2022, 48 (2): 201- 206.
URL
|
2 |
WU X Y, WU Z Y, GUO H, et al. DANNet: a one-stage domain adaptation network for unsupervised nighttime semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021: 15764-15773.
|
3 |
赫晓慧, 宋定君, 李盼乐, 等. 融合多尺度特征的遥感影像道路提取方法. 计算机工程, 2022, 48 (8): 196- 205.
URL
|
|
HE X H , SONG D J , LI P L , et al. Remote sensing image road extraction method combined with multi-scale features. Computer Engineering, 2022, 48 (8): 196- 205.
URL
|
4 |
范润泽, 刘宇红, 张荣芬, 等. 基于多尺度注意力机制的道路场景语义分割模型. 计算机工程, 2023, 49 (2): 288- 295.
URL
|
|
FAN R Z , LIU Y H , ZHANG R F , et al. Road scene semantic segmentation model based on multi-scale attention mechanism. Computer Engineering, 2023, 49 (2): 288- 295.
URL
|
5 |
DAI D X, VAN GOOL L. Dark model adaptation: semantic image segmentation from daytime to nighttime[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems. Washington D.C.,USA:IEEE Press,2018: 3819-3824.
|
6 |
SAKARIDIS C, DAI D X, VAN GOOL L. Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019: 7373-7382.
|
7 |
SAKARIDIS C , DAI D X , VAN GOOL L . Map-guided curriculum domain adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (6): 3139- 3153.
doi: 10.1109/TPAMI.2020.3045882
|
8 |
SUN L, WANG K W, YANG K L, et al. See clearer at night: towards robust nighttime semantic segmentation through day-night image conversion[EB/OL].[2023-06-05]. https://arxiv.org/abs/1908.05868.
|
9 |
ROMERA E, BERGASA L M, YANG K L, et al. Bridging the day and night domain gap for semantic segmentation[C]//Proceedings of IEEE Intelligent Vehicles Symposium. Washington D.C.,USA:IEEE Press,2019:1312-1318.
|
10 |
CORDTS M, OMRAN M, RAMOS S, et al. The Cityscapes dataset for semantic urban scene understanding[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016: 3213-3223.
|
11 |
MA H Y , LIN X R , YU Y Z . I2F: a unified image-to-feature approach for domain adaptive semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46 (3): 1695- 1710.
doi: 10.1109/TPAMI.2022.3229207
|
12 |
YANG L H, ZHUO W, QI L, et al. ST++: make self-training work better for semi-supervised semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 4258-4267.
|
13 |
TSAI Y H, HUNG W C, SCHULTER S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press, 2018: 7472-7481.
|
14 |
ZHANG P, ZHANG B, ZHANG T, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2021: 12409-12419.
|
15 |
WEI C, WANG W J, YANG W H, et al. Deep Retinex decomposition for low-light enhancement[EB/OL].[2023-06-05]. https://arxiv.org/abs/1808.04560.
|
16 |
DENG X Q, WANG P, LIAN X C, et al. NightLab: a dual-level architecture with hardness detection for segmentation at night[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 16917-16927.
|
17 |
ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D.C.,USA:IEEE Press,2019: 6687-6696.
|
18 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2018: 7132-7141.
|
19 |
MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2022: 5627-5636.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2016: 770-778.
|
21 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 6230-6239.
|
22 |
VU T H, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2019: 2512-2521.
|
23 |
ZHANG Y H , GUO X J , MA J Y , et al. Beyond brightening low-light images. International Journal of Computer Vision, 2021, 129 (4): 1013- 1037.
doi: 10.1007/s11263-020-01407-x
|
24 |
CHEN L C , PAPANDREOU G , KOKKINOS I , et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848.
doi: 10.1109/TPAMI.2017.2699184
|
25 |
LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C.,USA:IEEE Press,2017: 5168-5177.
|