1 |
田传鑫, 赵磊. 结直肠癌及结直肠癌肝转移流行病学特点. 中华肿瘤防治杂志, 2021, 28 (13): 1033- 1038.
doi: 10.16073/j.cnki.cjcpt.2021.13.12
|
|
TIAN C X, ZHAO L. Epidemiological characteristics of colorectal cancer and colorectal liver metastasis. Chinese Journal of Cancer Prevention and Treatment, 2021, 28 (13): 1033- 1038.
doi: 10.16073/j.cnki.cjcpt.2021.13.12
|
2 |
李道娟, 李倩, 贺宇彤. 结直肠癌流行病学趋势. 肿瘤防治研究, 2015, 42 (3): 305- 310.
doi: 10.3971/j.issn.1000-8578.2015.03.020
|
|
LI D J, LI Q, HE Y T. Epidemiological trends of colorectal cancer. Cancer Research on Prevention and Treatment, 2015, 42 (3): 305- 310.
doi: 10.3971/j.issn.1000-8578.2015.03.020
|
3 |
AHN S B, HAN D S, BAE J H, et al. The miss rate for colorectal adenoma determined by quality-adjusted, back-to-back colonoscopies. Gut and Liver, 2012, 6 (1): 64- 70.
doi: 10.5009/gnl.2012.6.1.64
|
4 |
FIORI M, MUSÉ P, SAPIRO G. A complete system for candidate polyps detection in virtual colonoscopy. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28 (7): 1460014.
doi: 10.1142/S0218001414600143
|
5 |
MAMONOV A V, FIGUEIREDO I N, FIGUEIREDO P N, et al. Automated polyp detection in colon capsule endoscopy. IEEE Transactions on Medical Imaging, 2014, 33 (7): 1488- 1502.
doi: 10.1109/TMI.2014.2314959
|
6 |
BERNAL J, SÁNCHEZ F, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 2015, 43, 99- 111.
doi: 10.1016/j.compmedimag.2015.02.007
|
7 |
SASMAL P, IWAHORI Y, BHUYAN M K, et al. Active contour segmentation of polyps in capsule endoscopic images[C]//Proceedings of International Conference on Signals and Systems. Washington D. C., USA: IEEE Press, 2018: 201-204.
|
8 |
任莉莉, 边璇, 王光磊, 等. 基于深度学习的息肉分割网络GLIA-Net. 计算机工程, 2022, 48 (12): 248- 254.
URL
|
|
REN L L, BIAN X, WANG G L, et al. Polyp segmentation network GLIA-Net based on deep learning. Computer Engineering, 2022, 48 (12): 248- 254.
URL
|
9 |
郑秋梅, 徐林康, 王风华, 等. 基于改进自注意力机制的金字塔场景解析网络. 计算机工程, 2023, 49 (1): 242- 249.
URL
|
|
ZHENG Q M, XU L K, WANG F H, et al. Pyramid scene parsing network based on improved self-attention mechanism. Computer Engineering, 2023, 49 (1): 242- 249.
URL
|
10 |
袁单飞, 陈慈发, 董方敏. 基于多尺度分割的图像识别残差网络研究. 计算机工程, 2022, 48 (5): 258-262, 271.
URL
|
|
YUAN D F, CHEN C F, DONG F M. Research on residual network of image recognition based on multiscale split. Computer Engineering, 2022, 48 (5): 258-262, 271.
URL
|
11 |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 3431-3440.
|
12 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer: 234-241.
|
13 |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615
|
14 |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of International Workshop on Deep Learning in Medical Image Analysis. Berlin, Germany: Springer, 2022: 1-10.
|
15 |
JHA D, SMEDSRUD P H, MICHAEL A R, et al. ResUNet++: an advanced architecture for medical image segmentation[C]//Proceedings of International Symposium on Multimedia. Washington D. C., USA: IEEE Press, 2019: 1-10.
|
16 |
FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention. 2020: 1-10.
|
17 |
吉淑滢, 肖志勇. 融合上下文和多尺度特征的胸部多器官分割. 中国图象图形学报, 2021, 26 (9): 2135- 2145.
URL
|
|
JI S Y, XIAO Z Y. Integrated context and multi-scale features in thoracic organs segmentation. Journal of Image and Graphics, 2021, 26 (9): 2135- 2145.
URL
|
18 |
|
19 |
|
20 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2010: 5998-6008.
|
21 |
WANG W H, XIE E Z, LI X A, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 1-10.
|
22 |
杨建秀. 无人机视角下车辆目标检测的算法研究[D]. 西安: 西安电子科技大学, 2021.
|
|
YANG J X. Research on algorithm of vehicle target detection from the perspective of UAV[D]. Xi'an: Xidian University, 2021. (in Chinese)
|
23 |
李金星, 孙俊, 李超, 等. 融合多头注意力机制的新冠肺炎联合诊断与分割. 中国图象图形学报, 2022, 27 (12): 3651- 3662.
URL
|
|
LI J X, SUN J, LI C, et al. A MHA-based integrated diagnosis and segmentation method for COVID-19 pandemic. Journal of Image and Graphics, 2022, 27 (12): 3651- 3662.
URL
|
24 |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 1-10.
|
25 |
SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer. International Journal of Computer Assisted Radiology and Surgery, 2014, 9 (2): 283- 293.
doi: 10.1007/s11548-013-0926-3
|
26 |
TAJBAKHSH N, GURUDU S R, LIANG J M. Automated polyp detection in colonoscopy videos using shape and context information. IEEE Transactions on Medical Imaging, 2016, 35 (2): 630- 644.
doi: 10.1109/TMI.2015.2487997
|
27 |
BERNAL J, SÁNCHEZ F J, FERNÁNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 2015, 43, 99- 111.
doi: 10.1016/j.compmedimag.2015.02.007
|
28 |
JHA D, SMEDSRUD P H, RIEGLER M H, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of International Conference on Multimedia Modeling. Berlin, Germany: Springer, 2020: 451-462.
|
29 |
董波, 周燕, 王永雄. 基于渐进结构感受野和全局注意力的显著性检测. 电子科技, 2021, 34 (1): 23- 30.
doi: 10.16180/j.cnki.issn1007-7820.2021.01.005
|
|
DONG B, ZHOU Y, WANG Y X. Saliency detection by progressive structural receptive field and global attention. Electronic Science and Technology, 2021, 34 (1): 23- 30.
doi: 10.16180/j.cnki.issn1007-7820.2021.01.005
|
30 |
FAN D P, JI G P, QIN X, et al. Cognitive vision inspired object segmentation metric and loss function. Scientia Sinica Informationis, 2021, 51 (9): 1475.
doi: 10.1360/SSI-2020-0370
|
31 |
FANG Y Q, CHEN C, YUAN Y X, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2019: 302-310.
|
32 |
YIN Z J, LIANG K M, MA Z Y, et al. Duplex contextual relation network for polyp segmentation[C]//Proceedings of the 19th International Symposium on Biomedical Imaging. Washington D. C., USA: IEEE Press, 2022: 1-5.
|
33 |
HUANG C H, WU H Y, LIN Y L. HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 mean dice and 86 fps[EB/OL]. [2023-05-15]. https://arxiv.org/abs/2101.07172v2.
|
34 |
LOU A, GUAN S Y, LOEW M, et al. CaraNet: context axial reverse attention network for segmentation of small medical objects[EB/OL]. [2023-05-15]. https://arxiv.org/abs/2108.07368v1.
|