1 |
LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recognition, 2017, 61, 650- 662.
doi: 10.1016/j.patcog.2016.06.008
|
2 |
|
3 |
|
4 |
LAND E H, MCCANN J J. Lightness and Retinex theory. Royal Society Open Science, 1971, 61(1): 1- 11.
|
5 |
ZHANG Y H, ZHANG J W, GUO X J. Kindling the darkness: a practical low-light image enhancer[C]//Proceedings of the 27th ACM International Conference on Multimedia. New York, USA: ACM Press, 2019: 1632-1640.
|
6 |
JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision. IEEE Transactions on Image Processing, 2021, 30, 2340- 2349.
doi: 10.1109/TIP.2021.3051462
|
7 |
GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 1780-1789.
|
8 |
LI C Y, GUO C L, CHEN C L. Learning to enhance low-light image via Zero-reference deep curve estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(8): 4225- 4238.
|
9 |
LIU R S, MA L, ZHANG J A, et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 10561-10570.
|
10 |
WU W H, WENG J, ZHANG P P, et al. URetinex-Net: retinex-based deep unfolding network for low-light image enhancement[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5901-5910.
|
11 |
YANG W H, WANG S Q, FANG Y M, et al. From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 3063-3072.
|
12 |
CRESWELL A, WHITE T, DUMOULIN V, et al. Generative adversarial networks: an overview. IEEE Signal Processing Magazine, 2018, 35(1): 53- 65.
doi: 10.1109/MSP.2017.2765202
|
13 |
江泽涛, 钱艺, 伍旭, 等. 一种基于ARD⁃GAN的低照度图像增强方法. 电子学报, 2021, 49(11): 2160- 2165.
doi: 10.12263/DZXB.20200822
|
|
JIANG Z T, QIAN Y, WU X, et al. Low light image enhancement method based on ARD-GAN. Acta Electronica Sinica, 2021, 49(11): 2160- 2165.
doi: 10.12263/DZXB.20200822
|
14 |
刘文, 杨梅芳, 聂江天, 等. 基于局部生成对抗网络的水上低照度图像增强. 计算机工程, 2021, 47(5): 16- 23.
URL
|
|
LIU W, YANG M F, NIE J T, et al. Low-light maritime image enhancement based on local generative adversarial network. Computer Engineering, 2021, 47(5): 16- 23.
URL
|
15 |
LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 10012-10022.
|
16 |
REN Y X, WU J, XIAO X F, et al. Online multi-granularity distillation for GAN compression[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 6793-6803.
|
17 |
|
18 |
|
19 |
|
20 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
21 |
MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2794-2802.
|
22 |
|
23 |
LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation[C]//Proceedings of 2012 IEEE International Conference on Image Processing. Washington D. C., USA: IEEE Press, 2012: 965-968.
|
24 |
GUO X J, LI Y, LING H B. LIME: low-light image enhancement via illumination map estimation. IEEE Transactions on Image Processing, 2017, 26(2): 982- 993.
doi: 10.1109/TIP.2016.2639450
|
25 |
MA K D, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion. IEEE Transactions on Image Processing, 2015, 24(11): 3345- 3356.
doi: 10.1109/TIP.2015.2442920
|
26 |
LIU J Y, XU D J, YANG W H, et al. Benchmarking low-light image enhancement and beyond. International Journal of Computer Vision, 2021, 129(4): 1153- 1184.
|
27 |
MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a "completely blind" image quality analyzer. IEEE Signal Processing Letters, 2013, 20(3): 209- 212.
doi: 10.1109/LSP.2012.2227726
|
28 |
WANG S H, ZHENG J, HU H M, et al. Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Transactions on Image Processing, 2013, 22(9): 3538- 3548.
doi: 10.1109/TIP.2013.2261309
|