1 |
ZBONTAR J, LECUN Y. Computing the stereo matching cost with a convolutional neural network[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2015: 1592-1599.
|
2 |
MAYER N, ILG E, HAUSSER P, et al. A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2016: 4040-4048.
|
3 |
LIANG Z F, FENG Y L, GUO Y L, et al. Learning for disparity estimation through feature constancy[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2018: 2811-2820.
|
4 |
XU H F, ZHANG J Y. AANet: adaptive aggregation network for efficient stereo matching[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 1959-1968.
|
5 |
LI J K, WANG P S, XIONG P F, et al. Practical stereo matching via cascaded recurrent network with adaptive correlation[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2022: 16263-16272.
|
6 |
NIE G Y, CHENG M M, LIU Y, et al. Multi-level context ultra-aggregation for stereo matching[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2019: 3283-3291.
|
7 |
余雪飞, 顾寄南, 黄则栋, 等. 基于边缘检测与注意力机制的立体匹配算法. 电子测量技术, 2022, 45(11): 167- 172.
|
|
YU X F, GU J N, HUANG Z D, et al. Stereo matching algorithm based on edge detection and attention mechanism. Electronic Measurement Technology, 2022, 45(11): 167- 172.
|
8 |
赵倩. 基于3D卷积模块和视差分割的立体匹配方法. 电子测量技术, 2021, 44(18): 72- 77.
|
|
ZHAO Q. Research of stereo matching method based on 3D convolution module and parallax segmentation. Electronic Measurement Technology, 2021, 44(18): 72- 77.
|
9 |
CAO Y E, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2019: 1-10.
|
10 |
CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2018: 5410-5418.
|
11 |
CHABRA R, STRAUB J, SWEENEY C, et al. StereoDRNet: dilated residual StereoNet[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2019: 11786-11795.
|
12 |
GUO X Y, YANG K, YANG W K, et al. Group-wise correlation stereo network[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2019: 3273-3282.
|
13 |
LIU Z, LIN Y T, CAO Y E, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2021: 10012-10022.
|
14 |
CARON M, TOUVRON H, MISRA I, et al. Emerging properties in self-supervised vision transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2021: 9650-9660.
|
15 |
HUANG Z Y, SHI X Y, ZHANG C, et al. FlowFormer: a transformer architecture for optical flow[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 668-685.
|
16 |
SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGLUE: learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2020: 4938-4947.
|
17 |
SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: detector-free local feature matching with transformers[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2021: 8922-8931.
|
18 |
LI Z S, LIU X T, DRENKOW N, et al. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2021: 6197-6206.
|
19 |
RAO Z B, HE M Y, DAI Y C, et al. Sliding space-disparity transformer for stereo matching. Neural Computing and Applications, 2022, 34(24): 21863- 21876.
doi: 10.1007/s00521-022-07621-7
|
20 |
TAY Y, DEHGHANI M, BAHRI D, et al. Efficient transformers: a survey. ACM Computing Surveys, 2022, 55(6): 109.
|
21 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2017: 2117-2125.
|
22 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2021: 13713-13722.
|
23 |
|
24 |
HAGHVERDI L, LUN A T L, MORGAN M D, et al. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nature Biotechnology, 2018, 36(5): 421- 427.
doi: 10.1038/nbt.4091
|
25 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C. , USA: IEEE Press, 2017: 764-773.
|
26 |
LI B, SHEN C H, DAI Y C, et al. Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2015: 1119-1127.
|
27 |
GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C. , USA: IEEE Press, 2012: 3354-3361.
|
28 |
|
29 |
|