作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (5): 26-32. doi: 10.19678/j.issn.1000-3428.0067904

• 热点与综述 • 上一篇    下一篇

基于漫反射的被动非视域成像

吴翠翠, 王维东   

  1. 浙江大学信息与电子工程学院浙江省信息处理与通信网络重点实验室, 浙江 杭州 310013
  • 收稿日期:2023-06-21 修回日期:2023-10-10 发布日期:2023-11-14
  • 通讯作者: 吴翠翠,E-mail:22060663@zju.edu.cn E-mail:22060663@zju.edu.cn

Passive Non-Line-of-Sight Imaging Based on Diffuse Reflection

WU Cuicui, WANG Weidong   

  1. Zhejiang Provincial Key Laboratory of Information Processing and Communication Networks, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310013, Zhejiang, China
  • Received:2023-06-21 Revised:2023-10-10 Published:2023-11-14
  • Contact: 吴翠翠,E-mail:22060663@zju.edu.cn E-mail:22060663@zju.edu.cn

摘要: 非视域(NLOS)成像是一种综合成像和计算重构的技术,指在不直接拍摄场景的情况下通过获取介质上隐藏场景的散射或反射信息对其进行重建。目前的NLOS成像还处于早期发展阶段,场景模型、目标信息重建等尚无系统研究方法。为此,提出一种针对无遮挡、非自发光场景的NLOS成像方法。基于光辐射理论,分析该场景下漫反射面的成像与隐藏物体形状的关系,确定NLOS成像模型与重建目标。使用渲染软件结合运动图像专家组7(MPEG7)数据集,生成符合实际物理意义的漫反射被动非视域全影(DS-NLOS)数据集。构建被动非视域重建网络模型(Re-NLOS),采用视觉Transformer(ViT)结构结合生成式对抗网络(GAN)提取采集的漫反射面图像的全局特征,并恢复隐藏物体形状。在DS-NLOS数据集上的实验结果表明,该方法能够从漫反射面上恢复隐藏物体的形状信息,在测试集20个类别的物体上的峰值信噪比(PSNR)和结构相似性(SSIM)相比漫反射面全影图像平均提高了5.85 dB和0.038 1,对真实室内场景也具有一定的恢复能力。

关键词: 被动非视域成像, 漫反射, 全影图像, 生成式对抗网络, 亮度传输

Abstract: Non-Line-of-Sight (NLOS) imaging, which combines imaging and computational reconstruction, describes the reconstruction of hidden scenes in a medium by capturing scattered or reflected information without directly imaging the scene. NLOS imaging is still in the early stages of its development, and systematic research methods for scene modeling and target information reconstruction are lacking. To address these issues, an NLOS imaging method for unobstructed and non-self-luminous scenes is proposed. Based on optical radiation theory, the relationship between the imaging of diffuse reflection surfaces in the scene and the shape of hidden objects is analyzed to determine the NLOS imaging model and reconstruction targets. A Diffuse reflection full-Shadow passive NLOS (DS-NLOS) dataset that resembles physical reality is generated by combining a rendering software with the Motion Picture Experts Group 7 (MPEG7) dataset . A passive NLOS Reconstruction network model (Re-NLOS) is constructed using a Visual Transformer (ViT) structure in combination with a Generative Adversarial Network (GAN) to extract global features from captured diffuse reflection surface images and recover the shape of hidden objects. Experimental results on the DS-NLOS dataset demonstrate that this method can recover the shape information of hidden objects from diffusely reflected surfaces. In comparison with the diffuse reflection full-shadow images, the average Peak Signal-to-Noise Ratio (PSNR) for 20 object categories in the present test set is increased by 5.85 dB, and the average Structural SIMilarity (SSIM ) is increased by 0.038 1. This method also demonstrates restore capabilities in real indoor scenes.

Key words: passive Non-Line-of-Sight(NLOS) imaging, diffuse reflection, full-shadow image, Generative Adversarial Network(GAN), brightness transfer

中图分类号: