[1] LAURENZIS M, CHRISTNACHER F, VELTEN A. Study of a dual mode SWIR active imaging system for direct imaging and non-line-of-sight vision[EB/OL].[2023-05-11]. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9465/1/Study-of-a-dual-mode-SWIR-active-imaging-system-for/10.1117/12.2175857.short. [2] PANDHARKAR R, VELTEN A, BARDAGJY A, et al. Estimating motion and size of moving non-line-of-sight objects in cluttered environments[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA:IEEE Press, 2011:265-272. [3] GARIEPY G, TONOLINI F, HENDERSON R, et al. Detection and tracking of moving objects hidden from view[J]. Nature Photonics, 2016, 10:23-26. [4] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words:Transformers for image recognition at scale[EB/OL].[2023-05-11]. https://arxiv.org/abs/2010.11929. [5] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11):139-144. [6] METZLER C A, LINDELL D B, WETZSTEIN G. Keyhole imaging:non-line-of-sight imaging and tracking of moving objects along a single optical path[J]. IEEE Transactions on Computational Imaging, 2021, 7:1-12. [7] TORRALBA A, FREEMAN W T. Accidental pinhole and pinspeck cameras:revealing the scene outside the picture[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2012:374-381. [8] 苏晴. 被动非视域半影成像方法的研究[D]. 哈尔滨:哈尔滨工业大学, 2020. SU Q. Research on passive non-line-of-sight penumbra imaging method[D].Harbin:Harbin Institute of Technology, 2020. (in Chinese) [9] BOUMAN K L, YE V, YEDIDIA A B, et al. Turning corners into cameras:principles and methods[C]//Proceedings of IEEE International Conference on Computer Vision(ICCV). Washington D.C., USA:IEEE Press, 2017:2270-2278. [10] SEIDEL S W, MURRAY-BRUCE J, MA Y, et al. Two-dimensional non-line-of-sight scene estimation from a single edge occluder[J]. IEEE Transactions on Computational Imaging, 2020, 7:58-72. [11] TANAKA K, MUKAIGAWA Y, KADAMBI A. Polarized non-line-of-sight imaging[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA:IEEE Press, 2020:2136-2145. [12] BARADAD M, YE V, YEDIDIA A B, et al. Inferring light fields from shadows[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D.C., USA:IEEE Press, 2018:6267-6275. [13] SWEDISH T, HENLEY C, RASKAR R. Objects as cameras:estimating high-frequency illumination from shadows[C]//Proceedings of IEEE/CVF International Conference on Computer Vision(ICCV). Washington D.C., USA:IEEE Press, 2021:2593-2602. [14] DENG R J, JIN X, DU D Y. 3D location and trajectory reconstruction of a moving object behind scattering media[J]. IEEE Transactions on Computational Imaging, 2022, 8:371-384. [15] SASAKI T, LEGER J R. Non-line-of-sight object location estimation from scattered light using plenoptic data[J]. Journal of the Optical Society of America A:Optics, Image Science, and Vision, 2021, 38(2):211-228. [16] GENG R X, HU Y, LU Z, et al. Passive non-line-of-sight imaging using optimal transport[J]. IEEE Transactions on Image Processing, 2022, 31:110-124. [17] ZHENG S S, LIAO M H, WANG F, et al. Non-line-of-sight imaging under white-light illumination:a two-step deep learning approach[J]. Optics Express, 2021, 29(24):40091-40105. [18] CHEN W Z, DANEAU S, BROSSEAU C, et al. Steady-state non-line-of-sight imaging[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA:IEEE Press, 2019:6790-6799. [19] TANCIK M, SATAT G, RASKAR R. Flash photography for data-driven hidden scene recovery[EB/OL].[2023-05-11]. https://arxiv.org/abs/1810.11710. [20] 吴术孔. 基于漫反射信息的非视域成像方法的研究[D]. 南京:东南大学, 2021. WU S K. Research on non-line-of-sight imaging method based on diffuse reflection information[D]. Nanjing:Southeast University, 2021. (in Chinese) [21] 于亭义, 乔木, 刘红林, 等. 基于深度学习的非视域成像[J]. 光学学报, 2019, 39(7):79-85. YU T Y, QIAO M, LIU H L, et al. Non-line-of-sight imaging through deep learning[J]. Acta Optica Sinica, 2019, 39(7):79-85.(in Chinese) [22] KRSKA W, SEIDEL S W, SAUNDERS C, et al. Double your corners, double your fun:the doorway camera[C]//Proceedings of IEEE International Conference on Computational Photography(ICCP). Washington D.C., USA:IEEE Press, 2022:1-12. [23] TANCIK M, SWEDISH T, SATAT G, et al. Data-driven non-line-of-sight imaging with a traditional camera[EB/OL].[2023-05-11]. https://opg.optica.org/abstract.cfm?URI=ISA-2018-IW2B.6. [24] AITTALA M, SHARMA P, MURMANN L, et al. Computational mirrors:blind inverse light transport by deep matrix factorization[EB/OL].[2023-05-11]. https://arxiv.org/abs/1912.02314. [25] TANCIK M. Non-line-of-sight imaging using data-driven approaches[D]. Cambridge, USA:Massachusetts Institute of Technology, 2018. [26] 李现国, 李滨. 基于Transformer和多尺度CNN的图像去模糊[J]. 计算机工程, 2023, 49(9):226-233, 245. LI X G, LI B. Image deblurring based on Transformer and multi-scale CNN[J]. Computer Engineering, 2023, 49(9):226-233, 245.(in Chinese) [27] 缪斯, 祝永新. 针对图像盲去模糊的可微分神经网络架构搜索方法[J]. 计算机工程, 2021, 47(9):313-320. MIAO S, ZHU Y X. Differentiable neural architecture search method for blind image deblurring[J]. Computer Engineering, 2021, 47(9):313-320.(in Chinese) [28] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[EB/OL].[2023-05-11]. https://arxiv.org/abs/1704.00028. [29] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-05-11]. https://arxiv.org/abs/1409.1556. |