[1] BOTSTEIN D,RISCH N.Discovering genotypes underlying human phenotypes:past successes for Mendelian disease,future approaches for complex disease[J].Nature Genetics,2003,33(3):228-237. [2] XIONG Y,GUO M,RUAN L,et al.Heterogeneous network embedding enabling accurate disease association predictions[J].BMC Medical Genomics,2019,12(10):186. [3] SHI Chuan,LI Yitong,ZHANG Jiawei,et al.A survey of heterogeneous information network analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37. [4] DONG Y,CHAWLA N V,SWAMI A.Metapath2vec:scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining.Halifax,Canada:[s.n.],2017:158-169. [5] TANG J,QU M,MEI Q.PTE:predictive text embedding through large-scale heterogeneous text networks[C]//Proceedings of the 21th International Conference on Knowledge Discovery and Data Mining.Sydney,Australia:[s.n.],2015:321-332. [6] SHI Yu,GUI Huan,ZHU Qi,et al.AspEm:embedding learning by aspects in heterogeneous information networks[C]//Proceedings of SIAM International Conference on Data Mining.Washington D.C.,USA:IEEE Press,2018:144-152. [7] GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial nets[C]//Proceedings of Advances in Neural Information Processing Systems.[S.1.]:MIT Press,2014:635-648. [8] GOODFELLOW I.NIPS 2016 tutorial:generative adversarial networks[EB/OL].[2020-02-10].https://arxiv.org/abs/1701.00160. [9] MAAS A L,HANNUN A Y,NG A Y.Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of International Conference on Machine Learning.Washington D.C.,USA:IEEE Press,2013:226-238. [10] KESHAVA PRASAD T S,GOEL R,KANDASAMY K,et al.Human protein reference database-2009 update[J].Nucleic Acids Research,2009,37(1):767-772. [11] WANG D,WANG J,LU M,et al.Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J].Bioinformatics,2010,26(13):1644-1650. [12] VAN DRIEL M A,BRUGGEMAN J,VRIEND G,et al.A text-mining analysis of the human phenome[J].European Journal of Human Genetics,2006,14(5):535-542. [13] PIÑERO J,BRAVO À,QUERALT-ROSINACH N,et al.DisGeNET:a comprehensive platform integrating information on human disease-associated genes and variants[J].Nucleic Acids Research,2017,45(1):833-839. [14] CHOU C H,CHANG N W,SHRESTHA S,et al.miRTarBase 2016:updates to the experimentally validated miRNA-target interactions database[J].Nucleic Acids Research,2016,44(1):239-247. [15] CHEN Hailin,ZHANG Zuping.Similarity-based methods for potential human microRNA-disease association prediction[J].BMC Med Genomics,2013,6(1):12-20. [16] FAN Y,SIKLENKA K,ARORA S K,et al.miRNet-dissecting miRNA-target interactions and functional associations through network-based visual analysis[J].Nucleic Acids Research,2016,44(1):135-141. [17] ZENG Xiangxiang,LIAO Yuanlu,LIU Yuansheng,et al.Prediction and validation of disease genes using HeteSim scores[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2017,14(3):687-695. [18] SHI Chuan,KONG Xiangnan,HUANG Yue,et al.HeteSim:a general framework for relevance measure in heterogeneous networks[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(10):2479-2492. [19] PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:online learning of social representations[C]//Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2014:159-168. [20] MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of Advances in Neural Information Processing Systems.Boston,USA:MIT Press,2013:635-648. [21] LOBO J M,JIMENEZ-VALVERDE A,REAL R.AUC:a misleading measure of the performance of predictive distribution models[J].Global Ecology and Biogeography,2008,17(2):145-151. |