[1] NEGRINI S, DONZELLI S, AULISA A G, et al. 2016 SOSORT guidelines:orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth[J]. Scoliosis and Spinal Disorders, 2018, 13:3. [2] 海涌, 王云生. 青少年特发性脊柱侧凸:探索、发展、创新[J]. 骨科, 2023, 14(1):1-3. HAI Y, WANG Y S. Adolescent idiopathic scoliosis:exploration, development and innovation[J]. Orthopaedics, 2023, 14(1):1-3.(in Chinese) [3] BREDBENNER T L, ELIASON T D, FRANCIS W L, et al. Development and validation of a statistical shape modeling-based finite element model of the cervical spine under low-level multiple direction loading conditions[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2:58. [4] MELLER S, KALENDER W A. Building a statistical shape model of the pelvis[J]. International Congress Series, 2004, 1268:561-566. [5] BRYAN R, SURYA MOHAN P, HOPKINS A, et al. Statistical modelling of the whole human femur incorporating geometric and material properties[J]. Medical Engineering & Physics, 2010, 32(1):57-65. [6] NICOLELLA D P, BREDBENNER T L. Development of a parametric finite element model of the proximal femur using statistical shape and density modelling[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(2):101-110. [7] SARKALKAN N, WEINANS H, ZADPOOR A A. Statistical shape and appearance models of bones[J]. Bone, 2014, 60:129-140. [8] WAGNER D, KAMER L, ROMMENS P M, et al. 3D statistical modeling techniques to investigate the anatomy of the sacrum, its bone mass distribution, and the trans-sacral corridors[J]. Journal of Orthopaedic Research, 2014, 32(11):1543-1548. [9] ARMSTRONG J R, CAMPBELL J Q, PETRELLA A J. A comparison of Cartesian-only vs. Cartesian-spherical hybrid coordinates for statistical shape modeling in the lumbar spine[J]. Computer Methods and Programs in Biomedicine, 2021, 204:106056. [10] HEIMANN T, MEINZER H P. Statistical shape models for 3D medical image segmentation:a review[J]. Medical Image Analysis, 2009, 13(4):543-563. [11] RASOULIAN A, ROHLING R, ABOLMAESUMI P. Lumbar spine segmentation using a statistical multi-vertebrae anatomical shape+pose model[J]. IEEE Transactions on Medical Imaging, 2013, 32(10):1890-1900. [12] SOZOU P D, COOTES T F, TAYLOR C J, et al. A non-linear generalisation of PDMs using polynomial regression[C]//Proceedings of Conference on British Machine Vision. New York, USA:ACM Press, 1994:397-406. [13] SOZOU P D, COOTES T F, TAYLOR C J, et al. Non-linear point distribution modelling using a multi-layer perceptron[C]//Proceedings of 1995 British Conference on Machine Vision. New York, USA:ACM Press, 1995:107-116. [14] WILMS M, HANDELS H, EHRHARDT J. Multi-resolution multi-object statistical shape models based on the locality assumption[J]. Medical Image Analysis, 2017, 38:17-29. [15] 侯佳英. 基于深度学习的图像生成算法研究与实现[D]. 北京:北京邮电大学, 2021. HOU J Y. Research and implementation on image synthesis algorithm based on deep learning[D]. Beijing:Beijing University of Posts and Telecommunications, 2021. (in Chinese) [16] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[EB/OL].[2023-05-14]. https://doi.org/10.48550/arXiv.2006.11239. [17] 王燕萍, 吕磊, 苏志龙, 等. 基于深度学习的高质量图像生成方法综述[J]. 激光杂志, 2023, 44(6):7-12. WANG Y P, LV L, SU Z L, et al. Overview of high-quality image generation methods based on deep learning[J]. Laser Journal, 2023, 44(6):7-12.(in Chinese) [18] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL].[2023-05-14]. https://arxiv.org/abs/1312.6114. [19] 郭奉琦, 孟凡荣, 王志晓. 基于变分自编码器的谣言立场分类算法[J]. 计算机工程, 2022, 48(2):99-105. GUO F Q, MENG F R, WANG Z X. Rumor stance classification algorithm based on variational auto-encoder[J]. Computer Engineering, 2022, 48(2):99-105.(in Chinese) [20] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[EB/OL].[2023-05-14]. https://arxiv.org/abs/1406.2661. [21] 罗嗣卿, 陈慧. 基于生成对抗网络的图像场景转换[J]. 计算机工程, 2023, 49(4):217-225. LUO S Q, CHEN H. Image-scene transformation based on generative adversarial networks[J]. Computer Engineering, 2023, 49(4):217-225.(in Chinese) [22] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2):347-369. CHEN F J, ZHU F, WU Q X, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2):347-369.(in Chinese) [23] LARSEN A, SNDERBY S K, LAROCHELLE H, et al. Autoencoding beyond pixels using a learned similarity metric[C]//Proceedings of International Conference on Machine Learning. New York, USA:ACM Press, 2016:1558-1566. [24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York, USA:ACM Press, 2017:6000-6010. [25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D.C., USA:IEEE Press, 2016:770-778. [26] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[EB/OL].[2023-05-14]. https://arxiv.org/abs/1706.08500. [27] BARRATT S T, SHARMA R. A note on the inception score[EB/OL].[2023-05-14]. https://arxiv.org/abs/1801.01973. [28] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4):600-612. [29] ANGELO L D, STEFANO P D. A new method for the automatic identification of the dimensional features of vertebrae[J]. Computer Methods and Programs in Biomedicine, 2015, 121(1):36-48. |