1 |
BARREDO J I. Major flood disasters in Europe: 1950-2005. Natural Hazards, 2007, 42(1): 125- 148.
doi: 10.1007/s11069-006-9065-2
|
2 |
赵夏阳. 多源信息实时融合的实景还原及其应用[D]. 南京: 河海大学, 2007.
|
|
ZHAO X Y. Landscape simulation and applications based multi-sources information[D]. Nanjing: Hohai University, 2007. (in Chinese)
|
3 |
VITTUCCI C, GUERRIERO L, FERRAZZOLI P, et al. River water level prediction using passive microwave signatures—a case study: the Bermejo Basin. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3903- 3914.
doi: 10.1109/JSTARS.2014.2321457
|
4 |
BISWAS R K, JAYAWARDENA A W. Water level prediction by artificial neural network in a flashy transboundary river of Bangladesh. Global Nest Journal, 2014, 16(2): 432- 444.
doi: 10.30955/gnj.001226
|
5 |
OUMA Y, TATEISHI R. Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: methodological overview and case study assessment. Water, 2014, 6(6): 1515- 1545.
|
6 |
TSUBAKI R, FUJITA I, TSUTSUMI S. Measurement of the flood discharge of a small-sized river using an existing digital video recording system. Journal of Hydro-environment Research, 2011, 5(4): 313- 321.
doi: 10.1016/j.jher.2010.12.004
|
7 |
CREUTIN J D, MUSTE M, BRADLEY A A, et al. River gauging using PIV techniques: a proof of concept experiment on the Iowa River. Journal of Hydrology, 2003, 277(3/4): 182- 194.
|
8 |
白俊卿, 韩柏迅, 张丰侠. 基于深度学习的无人机图像语义分割算法研究. 计算机工程, 2023, 49(4): 233- 239.
URL
|
|
BAI J Q, HAN B X, ZHANG F X. Deep learning-based UAV image semantic segmentation algorithm research. Computer Engineering, 2023, 49(4): 233- 239.
URL
|
9 |
程淑红, 赵考鹏, 张仕军, 等. 基于U-net的水位线检测. 计量学报, 2019, 40(3): 361- 366.
URL
|
|
CHENG S H, ZHAO K P, ZHANG S J, et al. Water level detection based on U-net. Acta Metrologica Sinica, 2019, 40(3): 361- 366.
URL
|
10 |
冷建伟, 沈芳婷. 基于HSV色彩模型与区域生长法的水文图像分割. 计算机工程, 2017, 43(7): 223- 228.
URL
|
|
LENG J W, SHEN F T. Hydrological image segmentation based on HSV color model and region growing algorithm. Computer Engineering, 2017, 43(7): 223- 228.
URL
|
11 |
STECCANELLA L, BLOISI D D, CASTELLINI A, et al. Waterline and obstacle detection in images from low-cost autonomous boats for environmental monitoring. Robotics and Autonomous Systems, 2020, 124, 103346.
doi: 10.1016/j.robot.2019.103346
|
12 |
MUHADI N A, ABDULLAH A F, BEJO S K, et al. Deep learning semantic segmentation for water level estimation using surveillance camera. Applied Sciences, 2021, 11(20): 9691.
doi: 10.3390/app11209691
|
13 |
AHMAD T, BEBIS G, NICOLESCU M, et al. Horizon line detection using supervised learning and edge cues. Computer Vision and Image Understanding, 2020, 191, 102879.
doi: 10.1016/j.cviu.2019.102879
|
14 |
傅启凡, 路茗, 张质懿, 等. 基于语义分割的水位监测方法研究. 激光与光电子学进展, 2022, 59(4): 0410004.
URL
|
|
FU Q F, LU M, ZHANG Z Y, et al. Water level monitoring method based on semantic segmentation. Laser & Optoelectronics Progress, 2022, 59(4): 0410004.
URL
|
15 |
LO S W, WU J H, LIN F P, et al. Visual sensing for urban flood monitoring. Sensors, 2015, 15(8): 20006- 20029.
doi: 10.3390/s150820006
|
16 |
XU J C, XIONG Z X, BHATTACHARYYA S P. PIDNet: a real-time semantic segmentation network inspired by PID controllers[EB/OL]. [2023-07-10]. https://arxiv.org/pdf/2206.02066.
|
17 |
XU J C, BHATTACHARYYA S P. A PID controller architecture inspired enhancement to the PSO algorithm[C]//Proceedings of the 2022 Future of Information and Communication Conference. Berlin, Germany: Springer, 2022: 587-603.
|
18 |
MA R J, LI S Y, ZHANG B, et al. Towards fast and robust real image denoising with attentive neural network and PID controller. IEEE Transactions on Multimedia, 2022, 24, 2366- 2377.
doi: 10.1109/TMM.2021.3079697
|
19 |
FAN M Y, LAI S Q, HUANG J S, et al. Rethinking BiSeNet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2021: 9716-9725.
|
20 |
HONG Y D, PAN H H, SUN W C, et al. Deep dual-resolution networks for real-time and accurate semantic segmentation of road scenes[EB/OL]. [2023-07-10]. https://arxiv.org/pdf/2101.06085.
|
21 |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2017: 2117-2125.
|
22 |
SHRIVASTAVA A, GUPTA A, GIRSHICK R. Training region-based object detectors with online hard example mining[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2016: 761-769.
|
23 |
|
24 |
|
25 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
26 |
|
27 |
HAN Q, FAN Z J, DAI Q, et al. On the connection between local attention and dynamic depth-wise convolution[EB/OL]. [2023-07-10]. https://arxiv.org/pdf/2106.04263.
|
28 |
CUI Z T, LI K C, ZHU Y Y, et al. You only need 90K parameters to adapt light: a light weight transformer for image enhancement and exposure correction[EB/OL]. [2023-07-10]. https://arxiv.org/pdf/2205.14871.
|
29 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 122-138.
|
30 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2018: 7132-7141.
|
31 |
ASHISH V, NOAM S, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 2022 Future of Information and Communication Conference. Berlin, Germany: Springer, 2017: 5998-6008.
|
32 |
WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 3-19.
|
33 |
LI X T, YOU A S, ZHU Z, et al. Semantic flow for fast and accurate scene parsing[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2020: 775-793.
|
34 |
|
35 |
YU C Q, GAO C X, WANG J B, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation. International Journal of Computer Vision, 2021, 129(11): 3051- 3068.
doi: 10.1007/s11263-021-01515-2
|
36 |
NIRKIN Y, WOLF L, HASSNER T. HyperSeg: patch-wise hypernetwork for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2021: 4061-4070.
|