1 |
YAN Q, YU F R, GONG Q X, et al. Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: a survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, 2016, 18(1): 602- 622.
|
2 |
POUTIEVSKI L, MASHAYEKHI O, ONG J, et al. Jupiter evolving: transforming google's datacenter network via optical circuit switches and software-defined networking[C]//Proceedings of the ACM SIGCOMM 2022 Conference. New York, USA: ACM Press, 2022: 66-85.
|
3 |
SELLAMI B, HAKIRI A, BEN YAHIA S, et al. Energy-aware task scheduling and offloading using deep reinforcement learning in SDN-enabled IoT network. Computer Networks, 2022, 210, 108957.
doi: 10.1016/j.comnet.2022.108957
|
4 |
CUI Y H, QIAN Q, GUO C, et al. Towards DDoS detection mechanisms in software-defined networking. Journal of Network and Computer Applications, 2021, 190, 103156.
doi: 10.1016/j.jnca.2021.103156
|
5 |
陈何雄, 罗宇薇, 韦云凯, 等. 基于联邦学习的SDN异常流量协同检测技术. 计算机工程, 2023, 49(3): 168- 176.
URL
|
|
CHEN H X, LUO Y W, WEI Y K, et al. Collaborative detection technology of SDN abnormal traffic based on federated learning. Computer Engineering, 2023, 49(3): 168- 176.
URL
|
6 |
DEB R, ROY S. A comprehensive survey of vulnerability and information security in SDN. Computer Networks, 2022, 206, 108802.
doi: 10.1016/j.comnet.2022.108802
|
7 |
CAO J H, XU M W, LI Q, et al. The LOFT attack: overflowing SDN flow tables at a low rate. IEEE/ACM Transactions on Networking, 2023, 3(31): 1416- 1431.
|
8 |
YU M L, HE T, MCDANIEL P, et al. Flow table security in SDN: adversarial reconnaissance and intelligent attacks[C]//Proceedings of the IEEE Conference on Computer Communications. Washington D. C., USA: IEEE Press, 2020: 1519-1528.
|
9 |
ZHANG M H, LI G Y, XU L, et al. Control plane reflection attacks and defenses in software-defined networks. IEEE/ACM Transactions on Networking, 2021, 29(2): 623- 636.
doi: 10.1109/TNET.2020.3040773
|
10 |
WANG Z, WANG R X, GAO J M, et al. Fault recognition using an ensemble classifier based on Dempster–Shafer Theory. Pattern Recognition, 2020, 99, 107079.
doi: 10.1016/j.patcog.2019.107079
|
11 |
GALAR M, FERNÁNDEZ A, BARRENECHEA E, et al. DRCW-OVO: distance-based relative competence weighting combination for One-vs-One strategy in multi-class problems. Pattern Recognition, 2015, 48(1): 28- 42.
doi: 10.1016/j.patcog.2014.07.023
|
12 |
HUI K H, LIM M H, LEONG M S, et al. Dempster-Shafer evidence theory for multi-bearing faults diagnosis. Engineering Applications of Artificial Intelligence, 2017, 57, 160- 170.
doi: 10.1016/j.engappai.2016.10.017
|
13 |
LI Z Y, XING W J, KHAMAISEH S, et al. Detecting saturation attacks based on self-similarity of OpenFlow traffic. IEEE Transactions on Network and Service Management, 2020, 17(1): 607- 621.
doi: 10.1109/TNSM.2019.2959268
|
14 |
ZHAO X H, WANG Q X, WU Z H, et al. Method for overflow attack defense of SDN network flow table based on stochastic differential equation. Wireless Personal Communications, 2021, 117(4): 3431- 3447.
doi: 10.1007/s11277-021-08086-y
|
15 |
GUO Y, MIAO F, ZHANG L C, et al. CATH: an effective method for detecting denial-of-service attacks in software defined networks. Science China Information Sciences, 2019, 62(3): 32106.
doi: 10.1007/s11432-017-9439-7
|
16 |
MUSUMECI F, IONATA V, PAOLUCCI F, et al. Machine-learning-assisted DDoS attack detection with P4 language[C]//Proceedings of the IEEE International Conference on Communications (ICC). Washington D. C., USA: IEEE Press, 2020: 1-6.
|
17 |
PHAN T V, NGUYEN T G, DAO N N, et al. DeepGuard: efficient anomaly detection in SDN with fine-grained traffic flow monitoring. IEEE Transactions on Network and Service Management, 2020, 17(3): 1349- 1362.
doi: 10.1109/TNSM.2020.3004415
|
18 |
RAN L Y, CUI Y H, GUO C, et al. Defending saturation attacks on SDN controller: a confusable instance analysis-based algorithm. Computer Networks, 2022, 213, 109098.
doi: 10.1016/j.comnet.2022.109098
|
19 |
杨亚红, 王海瑞. 基于Renyi熵和BiGRU算法实现SDN环境下的DDoS攻击检测方法. 计算机科学, 2022, 49(S1): 555- 561.
URL
|
|
YANG Y H, WANG H R. Implementation of DDoS attack detection method in SDN environment based on Renyi entropy and BiGRU algorithm. Computer Science, 2022, 49(S1): 555- 561.
URL
|
20 |
XIAO F Y. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy. Information Fusion, 2019, 46, 23- 32.
|
21 |
YUAN K J, XIAO F Y, FEI L G, et al. Modeling sensor reliability in fault diagnosis based on evidence theory. Sensors, 2016, 16(1): 113.
|
22 |
LI Y Z, YAO S J, ZHANG R Y, et al. Analyzing host security using D-S evidence theory and multisource information fusion. International Journal of Intelligent Systems, 2021, 36(2): 1053- 1068.
|
23 |
HUA Y, SUN Y Y, XU G D, et al. A fault diagnostic method for oil-immersed transformer based on multiple probabilistic output algorithms and improved DS evidence theory. International Journal of Electrical Power and Energy Systems, 2022, 137, 107828.
|
24 |
XIE L X, DING Y, YANG H Y, et al. Mitigating LFA through segment rerouting in IoT environment with traceroute flow abnormality detection. Journal of Network and Computer Applications, 2020, 164, 102690.
|
25 |
CUI Y H, YAN L S, LI S F, et al. SD-Anti-DDoS: fast and efficient DDoS defense in software-defined networks. Journal of Network and Computer Applications, 2016, 68, 65- 79.
|
26 |
PENG J C, CUI Y H, QIAN Q, et al. ADVICE: towards adaptive scheduling for data collection and DDoS detection in SDN. Journal of Information Security and Applications, 2021, 63, 103017.
|