[1] 音松, 陈雪云, 贝学宇.改进Mask RCNN算法及其在行人实例分割中的应用[J].计算机工程, 2021, 47(6):271-276, 283. YIN S, CHEN X Y, BEI X Y.Improved Mask RCNN algorithm and its application in pedestrian instance segmentation[J].Computer Engineering, 2021, 47(6):271-276, 283.(in Chinese) [2] 喻清挺, 喻维超, 喻国平.基于改进R-FCN的交通标志检测[J].计算机工程, 2021, 47(12):285-290, 298. YU Q T, YU W C, YU G P.Traffic sign detection based on improved R-FCN[J].Computer Engineering, 2021, 47(12):285-290, 298.(in Chinese) [3] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [4] GIRSHICK R.Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press.2015:1440-1448. [5] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [6] 李昊.基于深度学习的复杂环境下交通信号灯检测算法研究[D].郑州:郑州大学, 2018. LI H.Research on traffic signal detection algorithm based on deep learning in complex environment[D].Zhengzhou:Zhengzhou University, 2018.(in Chinese) [7] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [8] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-07-28].https://arxiv.org/abs/1804.02767. [9] BOCHKOVSKIY A, WANG C Y, LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].[2021-07-28].https://arxiv.org/abs/2004.10934. [10] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot multibox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [11] FU C Y, LIU W, RANGA A, et al.DSSD:deconvolutional single shot detector[EB/OL].[2021-07-28].https://arxiv.org/abs/1701.06659. [12] IANDOLA F N, HAN S, MOSKEWICZ M W, et al.SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[EB/OL].[2021-07-28].https://arxiv.org/pdf/1602.07360. [13] 钱弘毅, 王丽华, 牟宏磊.基于深度学习的交通信号灯快速检测与识别[J].计算机科学, 2019, 46(12):272-278. QIAN H Y, WANG L H, MOU H L.Fast detection and identification of traffic lights based on deep learning[J].Computer Science, 2019, 46(12):272-278.(in Chinese) [14] 鞠默然, 罗海波, 王仲博, 等.改进的YOLO V3算法及其在小目标检测中的应用[J].光学学报, 2019, 39(7):253-260. JU M R, LUO H B, WANG Z B, et al.Improved YOLO V3 algorithm and its application in small target detection[J].Acta Optica Sinica, 2019, 39(7):253-260.(in Chinese) [15] 毛涛.基于YOLO的交通信号灯检测算法[J].数字技术及应用, 2021, 39(6):97-99. MAO T.Traffic signal detection algorithm based on YOLO[J].Digital Technology & Application, 2021, 39(6):97-99.(in Chinese) [16] HE K M, ZHANG X Y, REN S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916. [17] LIN T Y, DOLLÁR P, GIRSHICK R, et al.Feature pyramid networks for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:936-944. [18] LIU S, QI L, QIN H F, et al.Path aggregation network for instance segmentation[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2018:8759-8768. [19] ZHENG Z H, WANG P, LIU W, et al.Distance-IoU loss:faster and better learning for bounding box regression[C]//Proceedings of AAAI Conference on Artificial Intelligence.Palo Alto, USA:AAAI Press, 2020:12993-13000. [20] WANG C Y, MARK L H Y, WU Y H, et al.CSPNet:a new backbone that can enhance learning capability of CNN[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1571-1580. [21] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [22] HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely connected convolutional networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:2261-2269. [23] 王艺皓, 丁洪伟, 李波, 等.复杂场景下基于改进YOLOv3的口罩佩戴检测算法[J].计算机工程, 2020, 46(11):12-22. WANG Y H, DING H W, LI B, et al.Mask wearing detection algorithm based on improved YOLOv3 in complex scenes[J].Computer Engineering, 2020, 46(11):12-22.(in Chinese) [24] DAI J F, LI Y, HE K M, et al.R-FCN:object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.New York, USA:ACM Press, 2016:379-387. [25] 马俊才.面向跨视角的信号灯检测[D].北京:北京交通大学, 2020. MA J C.Cross-view-oriented traffic light detection[D].Beijing:Beijing Jiaotong University, 2020.(in Chinese) |