[1] 宋清昆, 马丽, 曹建坤, 等.基于小波变换和均值滤波的图像去噪[J].黑龙江大学自然科学学报, 2016, 33(4):555-560. SONG Q K, MA L, CAO J K, et al.Image denoising based on wavelet transform and mean filtering[J].Journal of Natural Science of Heilongjiang University, 2016, 33(4):555-560.(in Chinese) [2] 张威.空间域中均值滤波与中值滤波去噪的应用研究[J].产业科技创新, 2020(12):65-66. ZHANG W.Application study of mean filtering and median filtering for noise removal in spatial domain[J].Industry Technology Innovation, 2020(12):65-66.(in Chinese) [3] LEI Z F, SU W B, HU Q.Multimode decomposition and wavelet threshold denoising of mold level based on mutual information entropy[J].Entropy, 2019, 21(2):1-15. [4] ZHANG K, ZUO W M, CHEN Y J, et al.Beyond a Gaussian denoiser:residual learning of deep CNN for image denoising[J].IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. [5] TIAN C W, XU Y, FEI L K, et al.Enhanced CNN for image denoising[J].CAAI Transactions on Intelligence Technology, 2019, 4(1):17-23. [6] 周博超, 韩雨男, 桂志国, 等.基于VGG网络与深层字典的低剂量CT图像去噪算法[J].计算机工程, 2022, 48(4):191-196, 205. ZHOU B C, HAN Y N, GUI Z G, et al.Low-dose CT image denoising algorithm based on VGG network and deep dictionary[J].Computer Engineering, 2022, 48(4):191-196, 205.(in Chinese) [7] JIANG X B, JIN Y, YAO Y.Low-dose CT lung images denoising based on multiscale parallel convolution neural network[J].The Visual Computer, 2021, 37(8):2419-2431. [8] ZHOU X Y, YANG K D.A denoising representation framework for underwater acoustic signal recognition[J].The Journal of the Acoustical Society of America, 2020, 147(4):377-383. [9] WANG Y, GUO J, GAO H, et al.UIEC2-Net:CNN-based underwater image enhancement using two color space[J].Signal Processing:Image Communication, 2021, 96:116250. [10] TIAN C W, XU Y, ZUO W M, et al.Designing and training of a dual CNN for image denoising[J].Knowledge-Based Systems, 2021, 226:106949. [11] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [12] YU F, KOLTUN V.Multi-scale context aggregation by dilated convolutions[EB/OL].[2022-04-03].https://arxiv.org/pdf/1511.07122.pdf. [13] HE J K, JIANG B, YANG C, et al.Hybrid dilated convolution network using attentive kernels for real-time semantic segmentation[C]//Proceedings of Chinese Conference on Pattern Recognition and Computer Vision.Berlin, Germany:Springer, 2020:129-141. [14] 姜竣, 翟东海.基于空洞卷积与特征增强的单阶段目标检测算法[J].计算机工程, 2021, 47(7):232-238, 248. JIANG J, ZHAI D H.Single-stage object detection algorithm based on dilated convolution and feature enhancement[J].Computer Engineering, 2021, 47(7):232-238, 248.(in Chinese) [15] TIAN C W, XU Y, LI Z Y, et al.Attention-guided CNN for image denoising[J].Neural Networks, 2020, 124:117-129. [16] 周晓杰.空洞卷积神经网络低剂量CT图像去噪[J].现代计算机, 2021(16):160-163. ZHOU X J.Low-dose CT denoising with dilated convolutional neural network[J].Modern Computer, 2021(16):160-163.(in Chinese) [17] ANWAR S, BARNES N.Real image denoising with feature attention[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2020:3155-3164. [18] JIAO J B, TU W C, HE S F, et al.FormResNet:formatted residual learning for image restoration[C]//Proceedings of Conference on Computer Vision and Pattern Recognition Workshops.Washington D.C., USA:IEEE Press, 2017:1034-1042. [19] GUO S, YAN Z F, ZHANG K, et al.Toward convolutional blind denoising of real photographs[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:1712-1722. [20] KINGMA D P, BA J L.Adam:a method for stochastic optimization[EB/OL].[2022-04-03].http://de.arxiv.org/pdf/1412.6980. [21] ISLAM M J, XIA Y Y, SATTAR J.Fast underwater image enhancement for improved visual perception[J].IEEE Robotics and Automation Letters, 2020, 5(2):3227-3234. [22] ISLAM M J, LUO P, SATTAR J.Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception[EB/OL].[2022-04-03].https://arxiv.org/abs/2002.01155v1. [23] LI H Y, LI J J, WANG W.A fusion adversarial underwater image enhancement network with a public test dataset[EB/OL].[2022-04-03].https://arxiv.org/abs/1906.06819v2. [24] ISLAM M J, EDGE C, XIAO Y Y, et al.Semantic segmentation of underwater imagery:dataset and benchmark[C]//Proceedings of International Conference on Intelligent Robots and Systems.Washington D.C., USA:IEEE Press, 2021:1769-1776. [25] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al.Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the British Machine Vision Conference.[S.l]:British Machine Vision Association, 2012:1-10. [26] KODAK E.Kodak lossless true color image suite (PhotoCD PCD0992)[EB/OL].[2022-04-03].http://r0k.us/graphics/kodak. [27] ZORAN D, WEISS Y.From learning models of natural image patches to whole image restoration[C]//Proceedings of International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2012:479-486. [28] HUYNH-THU Q, GHANBARI M.Scope of validity of PSNR in image/video quality assessment[J].Electronics Letters, 2008, 44(13):800. [29] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. [30] JAKUB P, GRZEGORZ M.Based on spectral analysis of voice controllable surveillance system using normalized mean square error[J].Advanced Materials Research, 2011, 340:156-160. [31] FUKUDA T, KOMATSU S.Image evaluation based on the mean structural similarity for wavefront coding[C]//Proceedings of the 22nd Microoptics Conference.Washington D.C., USA:IEEE Press, 2018:156-157. [32] DABOV K, FOI A, KATKOVNIK V, et al.Image denoising by sparse 3-D Transform-domain collaborative filtering[J].IEEE Transactions on Image Processing, 2007, 16(8):2080-2095. [33] ZHANG K, ZUO W, GU S, et al.Learning deep CNN denoiserprior for image restoration[C]//Proceedings of Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:3929-3938. |