[1] HU Jianqiu,XING Xianglei,JIANG Pan,et al.Pedestrian segmentation based on Mask R-CNN[J].Command Control and Simulation,2020(5):42-46.(in Chinese)胡剑秋,邢向磊,蒋攀,等.基于Mask R-CNN的行人分割[J].指挥控制与仿真,2020(5):42-46. [2] WEN Yaole,LI Linyan,SHANG Xinru,et al.An instance segmentation method based on improved Mask RCNN feature fusion[J].Computer Applications and Software,2019,36(10):130-133.(in Chinese)温尧乐,李林燕,尚欣茹,等.一种改进的Mask RCNN特征融合实例分割方法[J].计算机应用与软件,2019,36(10):130-133. [3] YU Bo,MA Shuhao,LI Hongyan,et al.Real-time pedestrian detection for far-infrared vehicle images and adaptive instance segmentation[J].Laser & Optoelectronics Progress,2020,57(2):293-303.(in Chinese)于博,马书浩,李红艳,等.远红外车载图像实时行人检测与自适应实例分割[J].激光与光电子学进展,2020,57(2):293-303. [4] ZHANG Yugui,SHEN Liuqing,HU Haimiao.Extraction of foreground area of pedestrian objects under thermal infrared video surveillance[J].Journal of Beijing University of Aeronautics and Astronautics,2020,46(9):1721-1729.(in Chinese)张玉贵,沈柳青,胡海苗.热红外视频监控下行人目标前景区域提取[J].北京航空航天大学学报,2020,46(9):1721-1729. [5] LUO Yuan,WANG Boyu,CHEN Xu.Research progresses of target detection technology based on deep learning[J].Semiconductor Optoelectronics,2020,41(1):1-10.(in Chinese)罗元,王薄宇,陈旭.基于深度学习的目标检测技术的研究综述[J].半导体光电,2020,41(1):1-10. [6] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C,USA:IEEE Press,2014:1-5. [7] GIRSHICK R.Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision.Washington D.C,USA:IEEE Press,2015:1-5. [8] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2015-04-10)[2020-04-22].https://arxiv.org/pdf/1409.1556.pdf. [9] REN S,HE K,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems.New York,USA:ACM Press,2015:91-99. [10] JOSEPH R,SANTOSH D.YOLO:real-time object detection[EB/OL].(2016-11-03)[2020-04-22].http://pjreddie.com/darknet. [11] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of 2017 IEEE Conference on Com-puter Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2017:6517-6525. [12] REDMON J,FARHADI A.YOLOv3:an incremental improvement[C]//Proceedings of 2018 IEEE Con-ference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2018:1-5. [13] SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern.Washington D.C.,USA:IEEE Press,2015:1-5. [14] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected CRFs[C]//Proceedings of International Conference on Learning Representation.San Diego,USA:[s.n.],2015:1-5. [15] CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,40(4):834-848. [16] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[EB/OL].(2017-12-05)[2020-04-22].https://arxiv.org/pdf/1706.05587.pdf. [17] CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin,Germany:Springer,2018:833-851. [18] HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN[C]//Proceedings of 2017 IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,2017:2961-2969. [19] LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[EB/OL].(2017-04-19)[2020-04-22].https://arxiv.org/pdf/1612.03144.pdf. [20] HE Kaiming,ZHANG Xiangyu,REN Shaoqing,et al.Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C.,USA:IEEE Press,2016:770-778. [21] XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residual transformations for deep neural networks[EB/OL].(2017-04-11)[2020-04-22].https://arxiv.org/pdf/1611. 05431.pdf. |