[1] HE K M, GKIOXARI G, DOLLÁR P, et al.Mask R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:2961-2969. [2] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once:unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:779-788. [3] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2014:580-587. [4] TIAN Z, SHEN C H, CHEN H, et al.FCOS:fully convolutional one-stage object detection[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9626-9635. [5] ZHOU X Y, WANG D Q, KRÄHENBÜHL P.Objects as points[EB/OL].[2021-08-25].https://arxiv.org/abs/1904.07850. [6] GIRSHICK R.Fast R-CNN[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2015:1440-1448. [7] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. [8] REDMON J, FARHADI A.YOLO9000:better, faster, stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:6517-6525. [9] REDMON J, FARHADI A.YOLOv3:an incremental improvement[EB/OL].[2021-08-25].https://arxiv.org/pdf/1804.02767.pdf. [10] LIU W, ANGUELOV D, ERHAN D, et al.SSD:single shot MultiBox detector[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:21-37. [11] 高宗, 李少波, 陈济楠, 等.基于YOLO网络的行人检测方法[J].计算机工程, 2018, 44(5):215-219, 226. GAO Z, LI S B, CHEN J N, et al.Pedestrian detection method based on YOLO network[J].Computer Engineering, 2018, 44(5):215-219, 226.(in Chinese) [12] NEUBECK A, VAN GOOL L.Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition.Washington D.C., USA:IEEE Press, 2006:850-855. [13] LI Y, QI H Z, DAI J F, et al.Fully convolutional instance-aware semantic segmentation[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:4438-4446. [14] CHEN H, SUN K Y, TIAN Z, et al.BlendMask:top-down meets bottom-up for instance segmentation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:8570-8578. [15] 伍锡如, 邱涛涛, 王耀南.改进Mask R-CNN的交通场景多目标快速检测与分割[J].仪器仪表学报, 2021, 42(7):242-249. WU X R, QIU T T, WANG Y N.Multi-object detection and segmentation for traffic scene based on improved Mask R-CNN[J].Chinese Journal of Scientific Instrument, 2021, 42(7):242-249.(in Chinese) [16] 闫天冉, 马晓静, 饶颖露, 等.基于改进Mask R-CNN的建筑钢筋尺寸检测算法[J].计算机工程, 2021, 47(9):274-281. YAN T R, MA X J, RAO Y L, et al.Rebar size detection algorithm for intelligent construction supervision based on improved Mask R-CNN[J].Computer Engineering, 2021, 47(9):274-281.(in Chinese) [17] BOLYA D, ZHOU C, XIAO F Y, et al.YOLACT:real-time instance segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:9156-9165. [18] WANG X L, KONG T, SHEN C H, et al.SOLO:segmenting objects by locations[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2020:649-665. [19] CHEN X L, GIRSHICK R, HE K M, et al.TensorMask:a foundation for dense object segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:2061-2069. [20] XIE E Z, SUN P Z, SONG X G, et al.PolarMask:single shot instance segmentation with polar representation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:12190-12199. [21] XIE E Z, WANG W H, DING M Y, et al.PolarMask++:enhanced polar representation for single-shot instance segmentation and beyond[EB/OL].[2021-08-25].https://arxiv.org/abs/2105.02184. [22] 马子彤, 王国栋.基于双流卷积神经网络的人体实例分割[J/OL].激光与光电子学进展:1-12[2021-09-08].http://kns.cnki.net/kcms/detail/31.1690.tn.20210712.1628.030.html. MA Z T, WANG G D.Human instance segmentation based on two-stream convolutional neural network[J/OL].Laser & Optoelectronics Progress:1-12[2021-09-08].http://kns.cnki.net/kcms/detail/31.1690.tn.20210712.1628.030.html. (in Chinese) [23] 刘文波, 叶涛, 李颀.基于改进SOLO v2的番茄叶部病害检测方法[J].农业机械学报, 2021, 52(8):213-220. LIU W B, YE T, LI Q.Tomato leaf disease detection method based on improved SOLO v2[J].Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8):213-220.(in Chinese) [24] 史彩娟, 陈厚儒, 葛录录, 等.注意力残差多尺度特征增强的显著性实例分割[J].图学学报, 2021, 42(6):883-890. SHI C J, CHEN H R, GE L L, et al.Salient instance segmentation via attention residual multi-scale feature enhancement[J].Journal of Graphics, 2021, 42(6):883-890.(in Chinese) [25] CHEN L C, ZHU Y K, PAPANDREOU G, et al.Encoder-Decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:833-851. [26] DAI J F, QI H Z, XIONG Y W, et al.Deformable convolutional networks[C]//Proceedings of IEEE International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2017:764-773. [27] YU F, KOLTUN V.Multi-scale context aggregation by dilated convolutions[EB/OL].[2021-08-25].https://arxiv.org/pdf/1511.07122.pdf. [28] HUANG J J, ZHU Z, HUANG G.Multi-stage HRNet:multiple stage high-resolution network for human pose estimation[EB/OL].[2021-08-25].https://arxiv.org/abs/1910.05901. [29] 王冲, 赵志刚, 潘振宽, 等.基于空洞卷积的人体实例分割算法[J].青岛大学学报(自然科学版), 2021, 34(2):53-58. WANG C, ZHAO Z G, PAN Z K, et al.Person instance segmentation algorithm based on dilated convolution[J].Journal of Qingdao University (Natural Science Edition), 2021, 34(2):53-58.(in Chinese) |