[1] PRITSKER A A B. Introduction to simulation and SLAM II[M]. New York, USA:John Wiley & Sons, Inc., 1984. [2] 王晨旭. SLAM 系统关键技术研究[D]. 北京:北京邮电大学, 2021. WANG C X. Research on key technologies of SLAM system[D]. Beijing:Beijing University of Posts and Telecommunications, 2021.(in Chinese) [3] 毛军,付浩,褚超群等.惯性/视觉/激光雷达SLAM技术综述[J].导航定位与授时,2022,9(4):17-30. MAO J, FU H, CHU C Q, et al. A review of simultaneous location and mapping based on intertial-visual-lidar fusion[J].Navigation, Positioning and Timing,2022,9(4):17-30.(in Chinese) [4] 杨世强,范国豪,白乐乐,等.基于几何约束的室内动态环境视觉SLAM[J].计算机工程与应用,2021,57(16):203-212. YANG S Q, FAN G H, BAI L L, et al. Geometric constraints-based visual SLAM under dynamic indoor environment[J].Computer Engineering and Applications,2021,57(16):203-212. (in Chinese) [5] 林凯,梁新武,蔡纪源.基于重投影深度差累积图与静态概率的动态RGB-D SLAM算法[J].浙江大学学报(工学版),2022,56(6):1062-1070. LIN K, LIANG X W, CAI J Y. Dynamic RGB-D SLAM algorithm based on reprojection depth difference cumulation map and static probability[J].Journal of Zhejiang University(Engineering Science),2022,56(6):1062-1070. (in Chinese) [6] 高成强,张云洲,王晓哲, 等.面向室内动态环境的半直接法RGB-D SLAM算法[J].机器人,2019,41(3):372-383. GAO C Q, ZHANG Y Z, WANG X Z,et al. Semi-direct RGB-D SLAM algorithm for dynamic indoor environment[J].Robot,2019,41(3):372-383. (in Chinese) [7] 高逸,王庆,杨高朝,等.基于几何约束和目标检测的室内动态SLAM[J].全球定位系统,2022,47(5):51-56. GAO Y, WANG Q, YANG G C, et al. Indoor dynamic SLAM based on geometric constraints and target detection[J].GNSS World of Chins, 2022,47(5):51-56. (in Chinese) [8] 杜晓英, 袁庆霓, 齐建友, 等. 动态场景下基于语义分割的视觉SLAM方法[J].计算机工程, 2024,50(3):242-249. DU X Y, YUAN Q N, QI J Y, et al. Visual SLAM method based on semantic segmentation in dynamic scene[J].Computer Engineering, 2024,50(3):242-249. (in Chinese) [9] 王金戈,邹旭东,仇晓松,等.动态环境下结合语义的鲁棒视觉SLAM[J].传感器与微系统,2019,38(5):125-128,132. WANG J G, ZOU X D, QIU X S, et al. Robust visual SLAM with semantics in dynamic environment[J].Sensors and Microsystems,2019,38(5):125-128, 132. (in Chinese) [10] 王霞, 左一凡. 视觉 SLAM 研究进展[J]. 智能系统学报, 2020, 15(5):825-834. WANG X, ZUO Y F. Research progress on visual SLAM[J]. Journal of Intelligent Systems, 2020, 15(5):825-834. (in Chinese) [11] 徐陈, 周怡君, 罗晨. 动态场景下基于光流和实例分割的视觉 SLAM 方法[J]. 光学学报, 2022, 42(14):147-159. XU C, ZHOU Y J, LUO C. Visual SLAM method based on optical flow and instance segmentation for dynamic scenes[J]. Acta Optica Sinica, 2022, 42(14):147-159. (in Chinese) [12] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6):1229-1251. ZHOU F Y, JIN L P, DONG J. Review of convolutional neural networks[J]. Chinese Journal of Computers, 2017, 40(6):1229-1251. (in Chinese) [13] HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap:an efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34:189-206. [14] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2:inverted residuals and linear bottlenecks[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2018:4510-4520. [15] FISCHLER M A, BOLLES R C. Random sample consensus:a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6):381-395. [16] HORN B K P. Closed-form solution of absolute orientation using unit quaternions[J]. Journal of the Optical Society of America A, 1987, 4(4):629-642. [17] 单欣, 王耀明, 董建萍. 基于RANSAC算法的基本矩阵估计的匹配方法[J]. 上海电机学院学报, 2006(4):66-69. SHAN X, WANG Y M, DONG J P. The matching method of based on RANSAC algorithm for estimation of the fundamental matrix[J]. Journal of Shanghai Dianji University, 2006 (4):66-69.(in Chinese) [18] 席志红, 李爽, 曾继琴, 等. 一种改进的 PnP 问题求解算法研究[J]. 应用科技, 2018, 45(4):56-60. XI Z H, LI S, ZENG J Q, et al. An improved algorithm for solving PnP Problem solving[J]. Applied Science and Technology, 2018, 45(4):56-60. (in Chinese) [19] BEAUCHEMIN S S, BARRON J L. The computation of optical flow[J]. ACM Computing Surveys, 1995, 27(3):433-466. [20] 刘钰嵩,何丽,袁亮,等.动态场景下基于光流的语义RGBD-SLAM算法[J].仪器仪表学报,2022,43(12):139-148. LIU Y D, HE L, YUAN L, et al. Semantic RGBD-SLAM in dynamic scene based on optical flow[J].Chinese Journal of Scientific Instrument,2022,43(12):139-148.(in Chinese) [21] AGARWAL A, JAWAHAR C V, NARAYANAN P J. A survey of planar homography estimation techniques[J].Centre for Visual Information Technology, 2005(3):1-25. [22] FARNEBÄCK G. Two-frame motion estimation based on polynomial expansion[C]//Proceedings of Scandinavian Conference on Image Analysis. Berlin, Germany:Springer, 2003:363-370. [23] 王耀贵. 图像高斯平滑滤波分析[J]. 计算机与信息技术, 2008 (8):79-81. WANG Y G. Image Gaussian smoothing filter analysis[J]. Computer and Information Technology, 2008(8):79-81. (in Chinese) [24] 郑萌萌,钱慧芳,周璇.基于监控视频的Farneback光流算法的人体异常行为检测[J].国外电子测量技术,2021,40(3):16-22. ZHENG M M, QIAN H F, ZHOU X. Human abnormal action detection based on Farneback optical flow arithmetic of surveillance video[J].Foreign Electronic Measurement Technology, 2021,40(3):16-22.(in Chinese) [25] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge, USA:MIT Press, 2004. |