作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2024, Vol. 50 ›› Issue (5): 250-259. doi: 10.19678/j.issn.1000-3428.0067775

• 图形图像处理 • 上一篇    下一篇

融合光流与多视角几何的动态视觉SLAM系统

周秦源, 邓越平, 张磊, 张陈, 卢日荣, 胡贤哲   

  1. 中南林业科技大学机电工程学院, 湖南 长沙 410000
  • 收稿日期:2023-06-02 修回日期:2023-08-01 发布日期:2024-05-14
  • 通讯作者: 周秦源,E-mail:1711078775@qq.com E-mail:1711078775@qq.com
  • 基金资助:
    湖南省重点研发计划(2019NK2022)。

Dynamic Visual SLAM System Integrating Optical Flow and Multi-View Geometry

ZHOU Qinyuan, DENG Yueping, ZHANG Lei, ZHANG Chen, LU Rirong, HU Xianzhe   

  1. School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410000, Hunan, China
  • Received:2023-06-02 Revised:2023-08-01 Published:2024-05-14
  • Contact: 周秦源,E-mail:1711078775@qq.com E-mail:1711078775@qq.com

摘要: 视觉同步定位与地图构建(SLAM)在动态干扰的情况下,导致定位精度下降且无法准确构建静态地图,提出一种结合光流和多视角几何的动态视觉SLAM系统,该系统是在ORB-SLAM2的基础上进行改进的。在追踪线程中引入处理后的光流信息,结合多视图几何,得到动态区域掩码对视野内图像帧进行分割,实现动态区域检测并滤除动态区域中的特征点,在保证视觉SLAM系统实时性的同时提高追踪准确度,替换原本的地图构建线程。在新的地图构建线程中,引入光流信息及MobileNetV2实例分割网络。利用实例分割网络分割结果结合光流动态区域掩码对获取到的有序点云逐层分割,解决地图构建中动态物体造成的"拖影"问题。同时对分割后的点云团融合语义信息,最终构建静态语义八叉树地图。在TUM Dynamic Objects数据集上的实验结果表明,相较于ORB-SLAM2,在高动态场景序列测试中,该算法的定位精度平均提升70.4%,最高可提升90%。

关键词: 同步定位与地图构建, 光流, 多视角几何, 动态场景, 运动物体检测, 实例分割, 点云分割

Abstract: Visual Simultaneous Localization and Mapping (SLAM) reduces the positioning accuracy and cannot accurately construct static maps under dynamic interference. A dynamic visual SLAM system combining optical flow and multi-view geometry is proposed, which is improved based on ORB-SLAM2. It introduces processed optical flow information into the tracking thread, which, when combines with multi-view geometry, yields dynamic-region masks for segmenting image frames in the field of view, thus achieving dynamic-region detection and the filtering of feature points in dynamic regions. This improves the tracking accuracy while ensuring the real-time performance of the visual SLAM system by replacing the original map's construction thread. In the new map's construction thread, optical flow information and the MobileNetV2 instance segmentation network are introduced. By combining the segmentation results of the instance segmentation network with the optical flow dynamic-region mask, an ordered point cloud is obtained and segmented by layer to solve the ″dragging″ issue caused by dynamic objects during map construction. Simultaneously, semantic information is fused into the segmented point-cloud cluster to construct a static semantic OctoMap. Experimental results on the TUM Dynamic Objects dataset show that compared with ORB-SLAM2, the positioning accuracy of the proposed algorithm improves by an average of 70.4%, with a maximum improvement of 90% in high dynamic scene sequence testing.

Key words: Simultaneous Localization and Mapping(SLAM), optical flow, multi-view geometry, dynamic scenes, moving object detection, instance segmentation, point cloud segmentation

中图分类号: