1 |
LINTHICUM D S. Cloud computing changes data integration forever: what's needed right now. IEEE Cloud Computing, 2017, 4(3): 50- 53.
doi: 10.1109/MCC.2017.47
|
2 |
杨清波, 陈振宇, 刘东, 等. 基于容器的调控云PaaS平台的设计与实现. 电网技术, 2020, 44(6): 2030- 2037.
URL
|
|
YANG Q B, CHEN Z Y, LIU D, et al. Design and implementation of dispatching and control cloud PaaS platform based on container. Power System Technology, 2020, 44(6): 2030- 2037.
URL
|
3 |
刘洋, 赵瑞锋, 李波, 等. 基于Docker技术的静态安全分析云计算应用. 电力科学与技术学报, 2021, 36(4): 181- 187.
URL
|
|
LIU Y, ZHAO R F, LI B, et al. Application research of static security analysis cloud computing based on Docker technology. Journal of Electric Power Science and Technology, 2021, 36(4): 181- 187.
URL
|
4 |
吴逸文, 张洋, 王涛, 等. 从Docker容器看容器技术的发展: 一种系统文献综述的视角. 软件学报, 2023, 34(12): 5527- 5551.
URL
|
|
WU Y W, ZHANG Y, WANG T, et al. Development exploration of container technology through Docker containers: a systematic literature review perspective. Journal of Software, 2023, 34(12): 5527- 5551.
URL
|
5 |
杜金涛, 董建刚, 承华青. Kubernetes水平伸缩策略的改进研究. 现代电子技术, 2023, 46(10): 129- 136.
URL
|
|
DU J T, DONG J G, CHENG H Q. Research on improvement of Kubernetes horizontal scaling strategy. Modern Electronics Technique, 2023, 46(10): 129- 136.
URL
|
6 |
BRENDAN B, BRAIN G, DAVID O, et al. Omega, and Kubernetes: lessons learned from three container-management systems over a decade. Association for Computing Machinery, 2016, 14(1): 70- 93.
|
7 |
GILLY K, JUIZ C, PUIGJANER R. An up-to-date survey in Web load balancing. World Wide Web, 2011, 14(2): 105- 131.
|
8 |
NGUYEN T T, YEOM Y J, KIM T, et al. Horizontal Pod autoscaling in Kubernetes for elastic container orchestration. Sensors, 2020, 20(16): 4621.
|
9 |
苏逸凡. 基于Kubernetes的动态资源调度策略研究与实现[D]. 杭州: 浙江理工大学, 2022.
|
|
SU Y F. Research and implementation of dynamic resource scheduling strategy based on Kubernetes[D]. Hangzhou: Zhejiang Sci-Tech University, 2022. (in Chinese)
|
10 |
石硕, 魏振辉, 刘晓菲, 等. 一种基于LSTM的Kubernetes容器云弹性伸缩策略研究. 制造业自动化, 2023, 45(9): 189- 196.
URL
|
|
SHI S, WEI Z H, LIU X F, et al. Research on an LSTM-based Kubernetes container cloud elastic scaling strategy. Manufacturing Automation, 2023, 45(9): 189- 196.
URL
|
11 |
陈烨. 面向Web应用的Kubernetes容器弹性伸缩方法的研究[D]. 上海: 华东师范大学, 2022.
|
|
CHEN Y. Research on flexible scaling method of Kubernetes container for Web application[D]. Shanghai: East China Normal University, 2022. (in Chinese)
|
12 |
BALLA D, SIMON C, MALIOSZ M. Adaptive scaling of Kubernetes Pods[C]//Proceedings of the 2020 IEEE/IFIP Network Operations and Management Symposium. Washington D. C., USA: IEEE Press, 2020: 1-5.
|
13 |
FARAHNAKIAN F, LILJEBERG P, PLOSILA J. LiRCUP: linear regression based CPU usage prediction algorithm for live migration of virtual machines in data centers[C]//Proceedings of the 39th Euromicro Conference on Software Engineering and Advanced Applications. Washington D. C., USA: IEEE Press, 2013: 23.
|
14 |
CALHEIROS R N, MASOUMI E, RANJAN R, et al. Workload prediction using ARIMA model and its impact on cloud applications' QoS. IEEE Transactions on Cloud Computing, 2015, 3(4): 449- 458.
|
15 |
JANARDHANAN D, BARRETT E. CPU workload forecasting of machines in data centers using LSTM recurrent neural networks and ARIMA models[C]//Proceedings of the 12th International Conference for Internet Technology and Secured Transactions(ICITST). Washington D. C., USA: IEEE Press, 2017: 55-60.
|
16 |
|
17 |
LARA-BENÍTEZ P, GALLEGO-LEDESMA L, CARRANZA-GARCÍA M, et al. Evaluation of the Transformer architecture for univariate time series forecasting[C]//Proceedings of the 19th Conference of the Spanish Association for Artificial Intelligence. Berlin, Germany: Springer, 2021: 106-115.
|
18 |
刘杭, 殷歆, 陈杰, 等. 基于混合网络模型的多维时间序列预测. 计算机工程, 2023, 49(1): 121- 129.
URL
|
|
LIU H, YIN X, CHEN J, et al. Multi-dimensional time-series prediction based on hybrid network models. Computer Engineering, 2023, 49(1): 121- 129.
URL
|
19 |
WU H, XU J, WANG J, et al. Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Advances in Neural Information Processing Systems, 2021, 34, 22419- 22430.
|
20 |
|
21 |
BISHOP C M. Training with noise is equivalent to Tikhonov regularization. Neural Computation, 1995, 7(1): 108- 116.
|
22 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of ECCV 2018. Berlin, Germany: Springer, 2018: 3-19.
|
23 |
|
24 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Washington D. C., USA: IEEE Press, 2015: 1-9.
|